DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // This file implements the asymptotic expansions of the incomplete // gamma functions P(a, x) and Q(a, x), used when a is large and // x ~ a. // // The primary reference is: // // "The Asymptotic Expansion of the Incomplete Gamma Functions" // N. M. Temme. // Siam J. Math Anal. Vol 10 No 4, July 1979, p757. // // A different way of evaluating these expansions, // plus a lot of very useful background information is in: // // "A Set of Algorithms For the Incomplete Gamma Functions." // N. M. Temme. // Probability in the Engineering and Informational Sciences, // 8, 1994, 291. // // An alternative implementation is in: // // "Computation of the Incomplete Gamma Function Ratios and their Inverse." // A. R. Didonato and A. H. Morris. // ACM TOMS, Vol 12, No 4, Dec 1986, p377. // // There are various versions of the same code below, each accurate // to a different precision. To understand the code, refer to Didonato // and Morris, from Eq 17 and 18 onwards. // // The coefficients used here are not taken from Didonato and Morris: // the domain over which these expansions are used is slightly different // to theirs, and their constants are not quite accurate enough for // 128-bit long double's. Instead the coefficients were calculated // using the methods described by Temme p762 from Eq 3.8 onwards. // The values obtained agree with those obtained by Didonato and Morris // (at least to the first 30 digits that they provide). // At double precision the degrees of polynomial required for full // machine precision are close to those recomended to Didonato and Morris, // but of course many more terms are needed for larger types. // #ifndef BOOST_MATH_DETAIL_IGAMMA_LARGE #define BOOST_MATH_DETAIL_IGAMMA_LARGE namespace boost{ namespace math{ namespace detail{ // This version will never be called (at runtime), it's a stub used // when T is unsuitable to be passed to these routines: // template
inline T igamma_temme_large(T, T, const Policy& /* pol */, mpl::int_<0> const *) { // stub function, should never actually be called BOOST_ASSERT(0); return 0; } // // This version is accurate for up to 64-bit mantissa's, // (80-bit long double, or 10^-20). // template
T igamma_temme_large(T a, T x, const Policy& pol, mpl::int_<64> const *) { BOOST_MATH_STD_USING // ADL of std functions T sigma = (x - a) / a; T phi = -boost::math::log1pmx(sigma, pol); T y = a * phi; T z = sqrt(2 * phi); if(x < a) z = -z; T workspace[13]; static const T C0[] = { -0.333333333333333333333L, 0.0833333333333333333333L, -0.0148148148148148148148L, 0.00115740740740740740741L, 0.000352733686067019400353L, -0.0001787551440329218107L, 0.39192631785224377817e-4L, -0.218544851067999216147e-5L, -0.18540622107151599607e-5L, 0.829671134095308600502e-6L, -0.176659527368260793044e-6L, 0.670785354340149858037e-8L, 0.102618097842403080426e-7L, -0.438203601845335318655e-8L, 0.914769958223679023418e-9L, -0.255141939949462497669e-10L, -0.583077213255042506746e-10L, 0.243619480206674162437e-10L, -0.502766928011417558909e-11L, }; workspace[0] = tools::evaluate_polynomial(C0, z); static const T C1[] = { -0.00185185185185185185185L, -0.00347222222222222222222L, 0.00264550264550264550265L, -0.000990226337448559670782L, 0.000205761316872427983539L, -0.40187757201646090535e-6L, -0.18098550334489977837e-4L, 0.764916091608111008464e-5L, -0.161209008945634460038e-5L, 0.464712780280743434226e-8L, 0.137863344691572095931e-6L, -0.575254560351770496402e-7L, 0.119516285997781473243e-7L, -0.175432417197476476238e-10L, -0.100915437106004126275e-8L, 0.416279299184258263623e-9L, -0.856390702649298063807e-10L, }; workspace[1] = tools::evaluate_polynomial(C1, z); static const T C2[] = { 0.00413359788359788359788L, -0.00268132716049382716049L, 0.000771604938271604938272L, 0.200938786008230452675e-5L, -0.000107366532263651605215L, 0.529234488291201254164e-4L, -0.127606351886187277134e-4L, 0.342357873409613807419e-7L, 0.137219573090629332056e-5L, -0.629899213838005502291e-6L, 0.142806142060642417916e-6L, -0.204770984219908660149e-9L, -0.140925299108675210533e-7L, 0.622897408492202203356e-8L, -0.136704883966171134993e-8L, }; workspace[2] = tools::evaluate_polynomial(C2, z); static const T C3[] = { 0.000649434156378600823045L, 0.000229472093621399176955L, -0.000469189494395255712128L, 0.000267720632062838852962L, -0.756180167188397641073e-4L, -0.239650511386729665193e-6L, 0.110826541153473023615e-4L, -0.56749528269915965675e-5L, 0.142309007324358839146e-5L, -0.278610802915281422406e-10L, -0.169584040919302772899e-6L, 0.809946490538808236335e-7L, -0.191111684859736540607e-7L, }; workspace[3] = tools::evaluate_polynomial(C3, z); static const T C4[] = { -0.000861888290916711698605L, 0.000784039221720066627474L, -0.000299072480303190179733L, -0.146384525788434181781e-5L, 0.664149821546512218666e-4L, -0.396836504717943466443e-4L, 0.113757269706784190981e-4L, 0.250749722623753280165e-9L, -0.169541495365583060147e-5L, 0.890750753220530968883e-6L, -0.229293483400080487057e-6L, }; workspace[4] = tools::evaluate_polynomial(C4, z); static const T C5[] = { -0.000336798553366358150309L, -0.697281375836585777429e-4L, 0.000277275324495939207873L, -0.000199325705161888477003L, 0.679778047793720783882e-4L, 0.141906292064396701483e-6L, -0.135940481897686932785e-4L, 0.801847025633420153972e-5L, -0.229148117650809517038e-5L, }; workspace[5] = tools::evaluate_polynomial(C5, z); static const T C6[] = { 0.000531307936463992223166L, -0.000592166437353693882865L, 0.000270878209671804482771L, 0.790235323266032787212e-6L, -0.815396936756196875093e-4L, 0.561168275310624965004e-4L, -0.183291165828433755673e-4L, -0.307961345060330478256e-8L, 0.346515536880360908674e-5L, -0.20291327396058603727e-5L, 0.57887928631490037089e-6L, }; workspace[6] = tools::evaluate_polynomial(C6, z); static const T C7[] = { 0.000344367606892377671254L, 0.517179090826059219337e-4L, -0.000334931610811422363117L, 0.000281269515476323702274L, -0.000109765822446847310235L, -0.127410090954844853795e-6L, 0.277444515115636441571e-4L, -0.182634888057113326614e-4L, 0.578769494973505239894e-5L, }; workspace[7] = tools::evaluate_polynomial(C7, z); static const T C8[] = { -0.000652623918595309418922L, 0.000839498720672087279993L, -0.000438297098541721005061L, -0.696909145842055197137e-6L, 0.000166448466420675478374L, -0.000127835176797692185853L, 0.462995326369130429061e-4L, }; workspace[8] = tools::evaluate_polynomial(C8, z); static const T C9[] = { -0.000596761290192746250124L, -0.720489541602001055909e-4L, 0.000678230883766732836162L, -0.0006401475260262758451L, 0.000277501076343287044992L, }; workspace[9] = tools::evaluate_polynomial(C9, z); static const T C10[] = { 0.00133244544948006563713L, -0.0019144384985654775265L, 0.00110893691345966373396L, }; workspace[10] = tools::evaluate_polynomial(C10, z); static const T C11[] = { 0.00157972766073083495909L, 0.000162516262783915816899L, -0.00206334210355432762645L, 0.00213896861856890981541L, -0.00101085593912630031708L, }; workspace[11] = tools::evaluate_polynomial(C11, z); static const T C12[] = { -0.00407251211951401664727L, 0.00640336283380806979482L, -0.00404101610816766177474L, }; workspace[12] = tools::evaluate_polynomial(C12, z); T result = tools::evaluate_polynomial(workspace, 1/a); result *= exp(-y) / sqrt(2 * constants::pi
() * a); if(x < a) result = -result; result += boost::math::erfc(sqrt(y), pol) / 2; return result; } // // This one is accurate for 53-bit mantissa's // (IEEE double precision or 10^-17). // template
T igamma_temme_large(T a, T x, const Policy& pol, mpl::int_<53> const *) { BOOST_MATH_STD_USING // ADL of std functions T sigma = (x - a) / a; T phi = -boost::math::log1pmx(sigma, pol); T y = a * phi; T z = sqrt(2 * phi); if(x < a) z = -z; T workspace[10]; static const T C0[] = { static_cast
(-0.33333333333333333L), static_cast
(0.083333333333333333L), static_cast
(-0.014814814814814815L), static_cast
(0.0011574074074074074L), static_cast
(0.0003527336860670194L), static_cast
(-0.00017875514403292181L), static_cast
(0.39192631785224378e-4L), static_cast
(-0.21854485106799922e-5L), static_cast
(-0.185406221071516e-5L), static_cast
(0.8296711340953086e-6L), static_cast
(-0.17665952736826079e-6L), static_cast
(0.67078535434014986e-8L), static_cast
(0.10261809784240308e-7L), static_cast
(-0.43820360184533532e-8L), static_cast
(0.91476995822367902e-9L), }; workspace[0] = tools::evaluate_polynomial(C0, z); static const T C1[] = { static_cast
(-0.0018518518518518519L), static_cast
(-0.0034722222222222222L), static_cast
(0.0026455026455026455L), static_cast
(-0.00099022633744855967L), static_cast
(0.00020576131687242798L), static_cast
(-0.40187757201646091e-6L), static_cast
(-0.18098550334489978e-4L), static_cast
(0.76491609160811101e-5L), static_cast
(-0.16120900894563446e-5L), static_cast
(0.46471278028074343e-8L), static_cast
(0.1378633446915721e-6L), static_cast
(-0.5752545603517705e-7L), static_cast
(0.11951628599778147e-7L), }; workspace[1] = tools::evaluate_polynomial(C1, z); static const T C2[] = { static_cast
(0.0041335978835978836L), static_cast
(-0.0026813271604938272L), static_cast
(0.00077160493827160494L), static_cast
(0.20093878600823045e-5L), static_cast
(-0.00010736653226365161L), static_cast
(0.52923448829120125e-4L), static_cast
(-0.12760635188618728e-4L), static_cast
(0.34235787340961381e-7L), static_cast
(0.13721957309062933e-5L), static_cast
(-0.6298992138380055e-6L), static_cast
(0.14280614206064242e-6L), }; workspace[2] = tools::evaluate_polynomial(C2, z); static const T C3[] = { static_cast
(0.00064943415637860082L), static_cast
(0.00022947209362139918L), static_cast
(-0.00046918949439525571L), static_cast
(0.00026772063206283885L), static_cast
(-0.75618016718839764e-4L), static_cast
(-0.23965051138672967e-6L), static_cast
(0.11082654115347302e-4L), static_cast
(-0.56749528269915966e-5L), static_cast
(0.14230900732435884e-5L), }; workspace[3] = tools::evaluate_polynomial(C3, z); static const T C4[] = { static_cast
(-0.0008618882909167117L), static_cast
(0.00078403922172006663L), static_cast
(-0.00029907248030319018L), static_cast
(-0.14638452578843418e-5L), static_cast
(0.66414982154651222e-4L), static_cast
(-0.39683650471794347e-4L), static_cast
(0.11375726970678419e-4L), }; workspace[4] = tools::evaluate_polynomial(C4, z); static const T C5[] = { static_cast
(-0.00033679855336635815L), static_cast
(-0.69728137583658578e-4L), static_cast
(0.00027727532449593921L), static_cast
(-0.00019932570516188848L), static_cast
(0.67977804779372078e-4L), static_cast
(0.1419062920643967e-6L), static_cast
(-0.13594048189768693e-4L), static_cast
(0.80184702563342015e-5L), static_cast
(-0.22914811765080952e-5L), }; workspace[5] = tools::evaluate_polynomial(C5, z); static const T C6[] = { static_cast
(0.00053130793646399222L), static_cast
(-0.00059216643735369388L), static_cast
(0.00027087820967180448L), static_cast
(0.79023532326603279e-6L), static_cast
(-0.81539693675619688e-4L), static_cast
(0.56116827531062497e-4L), static_cast
(-0.18329116582843376e-4L), }; workspace[6] = tools::evaluate_polynomial(C6, z); static const T C7[] = { static_cast
(0.00034436760689237767L), static_cast
(0.51717909082605922e-4L), static_cast
(-0.00033493161081142236L), static_cast
(0.0002812695154763237L), static_cast
(-0.00010976582244684731L), }; workspace[7] = tools::evaluate_polynomial(C7, z); static const T C8[] = { static_cast
(-0.00065262391859530942L), static_cast
(0.00083949872067208728L), static_cast
(-0.00043829709854172101L), }; workspace[8] = tools::evaluate_polynomial(C8, z); workspace[9] = static_cast
(-0.00059676129019274625L); T result = tools::evaluate_polynomial(workspace, 1/a); result *= exp(-y) / sqrt(2 * constants::pi
() * a); if(x < a) result = -result; result += boost::math::erfc(sqrt(y), pol) / 2; return result; } // // This one is accurate for 24-bit mantissa's // (IEEE float precision, or 10^-8) // template
T igamma_temme_large(T a, T x, const Policy& pol, mpl::int_<24> const *) { BOOST_MATH_STD_USING // ADL of std functions T sigma = (x - a) / a; T phi = -boost::math::log1pmx(sigma, pol); T y = a * phi; T z = sqrt(2 * phi); if(x < a) z = -z; T workspace[3]; static const T C0[] = { static_cast
(-0.333333333L), static_cast
(0.0833333333L), static_cast
(-0.0148148148L), static_cast
(0.00115740741L), static_cast
(0.000352733686L), static_cast
(-0.000178755144L), static_cast
(0.391926318e-4L), }; workspace[0] = tools::evaluate_polynomial(C0, z); static const T C1[] = { static_cast
(-0.00185185185L), static_cast
(-0.00347222222L), static_cast
(0.00264550265L), static_cast
(-0.000990226337L), static_cast
(0.000205761317L), }; workspace[1] = tools::evaluate_polynomial(C1, z); static const T C2[] = { static_cast
(0.00413359788L), static_cast
(-0.00268132716L), static_cast
(0.000771604938L), }; workspace[2] = tools::evaluate_polynomial(C2, z); T result = tools::evaluate_polynomial(workspace, 1/a); result *= exp(-y) / sqrt(2 * constants::pi
() * a); if(x < a) result = -result; result += boost::math::erfc(sqrt(y), pol) / 2; return result; } // // And finally, a version for 113-bit mantissa's // (128-bit long doubles, or 10^-34). // Note this one has been optimised for a > 200 // It's use for a < 200 is not recomended, that would // require many more terms in the polynomials. // template
T igamma_temme_large(T a, T x, const Policy& pol, mpl::int_<113> const *) { BOOST_MATH_STD_USING // ADL of std functions T sigma = (x - a) / a; T phi = -boost::math::log1pmx(sigma, pol); T y = a * phi; T z = sqrt(2 * phi); if(x < a) z = -z; T workspace[14]; static const T C0[] = { -0.333333333333333333333333333333333333L, 0.0833333333333333333333333333333333333L, -0.0148148148148148148148148148148148148L, 0.00115740740740740740740740740740740741L, 0.0003527336860670194003527336860670194L, -0.000178755144032921810699588477366255144L, 0.391926317852243778169704095630021556e-4L, -0.218544851067999216147364295512443661e-5L, -0.185406221071515996070179883622956325e-5L, 0.829671134095308600501624213166443227e-6L, -0.17665952736826079304360054245742403e-6L, 0.670785354340149858036939710029613572e-8L, 0.102618097842403080425739573227252951e-7L, -0.438203601845335318655297462244719123e-8L, 0.914769958223679023418248817633113681e-9L, -0.255141939949462497668779537993887013e-10L, -0.583077213255042506746408945040035798e-10L, 0.243619480206674162436940696707789943e-10L, -0.502766928011417558909054985925744366e-11L, 0.110043920319561347708374174497293411e-12L, 0.337176326240098537882769884169200185e-12L, -0.13923887224181620659193661848957998e-12L, 0.285348938070474432039669099052828299e-13L, -0.513911183424257261899064580300494205e-15L, -0.197522882943494428353962401580710912e-14L, 0.809952115670456133407115668702575255e-15L, -0.165225312163981618191514820265351162e-15L, 0.253054300974788842327061090060267385e-17L, 0.116869397385595765888230876507793475e-16L, -0.477003704982048475822167804084816597e-17L, 0.969912605905623712420709685898585354e-18L, }; workspace[0] = tools::evaluate_polynomial(C0, z); static const T C1[] = { -0.00185185185185185185185185185185185185L, -0.00347222222222222222222222222222222222L, 0.0026455026455026455026455026455026455L, -0.000990226337448559670781893004115226337L, 0.000205761316872427983539094650205761317L, -0.401877572016460905349794238683127572e-6L, -0.180985503344899778370285914867533523e-4L, 0.76491609160811100846374214980916921e-5L, -0.16120900894563446003775221882217767e-5L, 0.464712780280743434226135033938722401e-8L, 0.137863344691572095931187533077488877e-6L, -0.575254560351770496402194531835048307e-7L, 0.119516285997781473243076536699698169e-7L, -0.175432417197476476237547551202312502e-10L, -0.100915437106004126274577504686681675e-8L, 0.416279299184258263623372347219858628e-9L, -0.856390702649298063807431562579670208e-10L, 0.606721510160475861512701762169919581e-13L, 0.716249896481148539007961017165545733e-11L, -0.293318664377143711740636683615595403e-11L, 0.599669636568368872330374527568788909e-12L, -0.216717865273233141017100472779701734e-15L, -0.497833997236926164052815522048108548e-13L, 0.202916288237134247736694804325894226e-13L, -0.413125571381061004935108332558187111e-14L, 0.828651623988309644380188591057589316e-18L, 0.341003088693333279336339355910600992e-15L, -0.138541953028939715357034547426313703e-15L, 0.281234665322887466568860332727259483e-16L, }; workspace[1] = tools::evaluate_polynomial(C1, z); static const T C2[] = { 0.0041335978835978835978835978835978836L, -0.00268132716049382716049382716049382716L, 0.000771604938271604938271604938271604938L, 0.200938786008230452674897119341563786e-5L, -0.000107366532263651605215391223621676297L, 0.529234488291201254164217127180090143e-4L, -0.127606351886187277133779191392360117e-4L, 0.34235787340961380741902003904747389e-7L, 0.137219573090629332055943852926020279e-5L, -0.629899213838005502290672234278391876e-6L, 0.142806142060642417915846008822771748e-6L, -0.204770984219908660149195854409200226e-9L, -0.140925299108675210532930244154315272e-7L, 0.622897408492202203356394293530327112e-8L, -0.136704883966171134992724380284402402e-8L, 0.942835615901467819547711211663208075e-12L, 0.128722524000893180595479368872770442e-9L, -0.556459561343633211465414765894951439e-10L, 0.119759355463669810035898150310311343e-10L, -0.416897822518386350403836626692480096e-14L, -0.109406404278845944099299008640802908e-11L, 0.4662239946390135746326204922464679e-12L, -0.990510576390690597844122258212382301e-13L, 0.189318767683735145056885183170630169e-16L, 0.885922187259112726176031067028740667e-14L, -0.373782039804640545306560251777191937e-14L, 0.786883363903515525774088394065960751e-15L, }; workspace[2] = tools::evaluate_polynomial(C2, z); static const T C3[] = { 0.000649434156378600823045267489711934156L, 0.000229472093621399176954732510288065844L, -0.000469189494395255712128140111679206329L, 0.000267720632062838852962309752433209223L, -0.756180167188397641072538191879755666e-4L, -0.239650511386729665193314027333231723e-6L, 0.110826541153473023614770299726861227e-4L, -0.567495282699159656749963105701560205e-5L, 0.14230900732435883914551894470580433e-5L, -0.278610802915281422405802158211174452e-10L, -0.16958404091930277289864168795820267e-6L, 0.809946490538808236335278504852724081e-7L, -0.191111684859736540606728140872727635e-7L, 0.239286204398081179686413514022282056e-11L, 0.206201318154887984369925818486654549e-8L, -0.946049666185513217375417988510192814e-9L, 0.215410497757749078380130268468744512e-9L, -0.138882333681390304603424682490735291e-13L, -0.218947616819639394064123400466489455e-10L, 0.979099895117168512568262802255883368e-11L, -0.217821918801809621153859472011393244e-11L, 0.62088195734079014258166361684972205e-16L, 0.212697836327973697696702537114614471e-12L, -0.934468879151743333127396765626749473e-13L, 0.204536712267828493249215913063207436e-13L, }; workspace[3] = tools::evaluate_polynomial(C3, z); static const T C4[] = { -0.000861888290916711698604702719929057378L, 0.00078403922172006662747403488144228885L, -0.000299072480303190179733389609932819809L, -0.146384525788434181781232535690697556e-5L, 0.664149821546512218665853782451862013e-4L, -0.396836504717943466443123507595386882e-4L, 0.113757269706784190980552042885831759e-4L, 0.250749722623753280165221942390057007e-9L, -0.169541495365583060147164356781525752e-5L, 0.890750753220530968882898422505515924e-6L, -0.229293483400080487057216364891158518e-6L, 0.295679413754404904696572852500004588e-10L, 0.288658297427087836297341274604184504e-7L, -0.141897394378032193894774303903982717e-7L, 0.344635804994648970659527720474194356e-8L, -0.230245171745280671320192735850147087e-12L, -0.394092330280464052750697640085291799e-9L, 0.186023389685045019134258533045185639e-9L, -0.435632300505661804380678327446262424e-10L, 0.127860010162962312660550463349930726e-14L, 0.467927502665791946200382739991760062e-11L, -0.214924647061348285410535341910721086e-11L, 0.490881561480965216323649688463984082e-12L, }; workspace[4] = tools::evaluate_polynomial(C4, z); static const T C5[] = { -0.000336798553366358150308767592718210002L, -0.697281375836585777429398828575783308e-4L, 0.00027727532449593920787336425196507501L, -0.000199325705161888477003360405280844238L, 0.679778047793720783881640176604435742e-4L, 0.141906292064396701483392727105575757e-6L, -0.135940481897686932784583938837504469e-4L, 0.80184702563342015397192571980419684e-5L, -0.229148117650809517038048790128781806e-5L, -0.325247355129845395166230137750005047e-9L, 0.346528464910852649559195496827579815e-6L, -0.184471871911713432765322367374920978e-6L, 0.482409670378941807563762631738989002e-7L, -0.179894667217435153025754291716644314e-13L, -0.630619450001352343517516981425944698e-8L, 0.316241762877456793773762181540969623e-8L, -0.784092425369742929000839303523267545e-9L, }; workspace[5] = tools::evaluate_polynomial(C5, z); static const T C6[] = { 0.00053130793646399222316574854297762391L, -0.000592166437353693882864836225604401187L, 0.000270878209671804482771279183488328692L, 0.790235323266032787212032944390816666e-6L, -0.815396936756196875092890088464682624e-4L, 0.561168275310624965003775619041471695e-4L, -0.183291165828433755673259749374098313e-4L, -0.307961345060330478256414192546677006e-8L, 0.346515536880360908673728529745376913e-5L, -0.202913273960586037269527254582695285e-5L, 0.578879286314900370889997586203187687e-6L, 0.233863067382665698933480579231637609e-12L, -0.88286007463304835250508524317926246e-7L, 0.474359588804081278032150770595852426e-7L, -0.125454150207103824457130611214783073e-7L, }; workspace[6] = tools::evaluate_polynomial(C6, z); static const T C7[] = { 0.000344367606892377671254279625108523655L, 0.517179090826059219337057843002058823e-4L, -0.000334931610811422363116635090580012327L, 0.000281269515476323702273722110707777978L, -0.000109765822446847310235396824500789005L, -0.127410090954844853794579954588107623e-6L, 0.277444515115636441570715073933712622e-4L, -0.182634888057113326614324442681892723e-4L, 0.578769494973505239894178121070843383e-5L, 0.493875893393627039981813418398565502e-9L, -0.105953670140260427338098566209633945e-5L, 0.616671437611040747858836254004890765e-6L, -0.175629733590604619378669693914265388e-6L, }; workspace[7] = tools::evaluate_polynomial(C7, z); static const T C8[] = { -0.000652623918595309418922034919726622692L, 0.000839498720672087279993357516764983445L, -0.000438297098541721005061087953050560377L, -0.696909145842055197136911097362072702e-6L, 0.00016644846642067547837384572662326101L, -0.000127835176797692185853344001461664247L, 0.462995326369130429061361032704489636e-4L, 0.455790986792270771162749294232219616e-8L, -0.105952711258051954718238500312872328e-4L, 0.678334290486516662273073740749269432e-5L, -0.210754766662588042469972680229376445e-5L, }; workspace[8] = tools::evaluate_polynomial(C8, z); static const T C9[] = { -0.000596761290192746250124390067179459605L, -0.720489541602001055908571930225015052e-4L, 0.000678230883766732836161951166000673426L, -0.000640147526026275845100045652582354779L, 0.000277501076343287044992374518205845463L, 0.181970083804651510461686554030325202e-6L, -0.847950711706850318239732559632810086e-4L, 0.610519208250153101764709122740859458e-4L, -0.210739201834048624082975255893773306e-4L, }; workspace[9] = tools::evaluate_polynomial(C9, z); static const T C10[] = { 0.00133244544948006563712694993432717968L, -0.00191443849856547752650089885832852254L, 0.0011089369134596637339607446329267522L, 0.993240412264229896742295262075817566e-6L, -0.000508745012930931989848393025305956774L, 0.00042735056665392884328432271160040444L, -0.000168588537679107988033552814662382059L, }; workspace[10] = tools::evaluate_polynomial(C10, z); static const T C11[] = { 0.00157972766073083495908785631307733022L, 0.000162516262783915816898635123980270998L, -0.00206334210355432762645284467690276817L, 0.00213896861856890981541061922797693947L, -0.00101085593912630031708085801712479376L, }; workspace[11] = tools::evaluate_polynomial(C11, z); static const T C12[] = { -0.00407251211951401664727281097914544601L, 0.00640336283380806979482363809026579583L, -0.00404101610816766177473974858518094879L, }; workspace[12] = tools::evaluate_polynomial(C12, z); workspace[13] = -0.0059475779383993002845382844736066323L; T result = tools::evaluate_polynomial(workspace, 1/a); result *= exp(-y) / sqrt(2 * constants::pi
() * a); if(x < a) result = -result; result += boost::math::erfc(sqrt(y), pol) / 2; return result; } } // namespace detail } // namespace math } // namespace math #endif // BOOST_MATH_DETAIL_IGAMMA_LARGE
igamma_large.hpp
Page URL
File URL
Prev
20/24
Next
Download
( 28 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.