DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SPECIAL_FUNCTIONS_IGAMMA_INVERSE_HPP #define BOOST_MATH_SPECIAL_FUNCTIONS_IGAMMA_INVERSE_HPP #include
#include
#include
#include
#include
namespace boost{ namespace math{ namespace detail{ template
T find_inverse_s(T p, T q) { // // Computation of the Incomplete Gamma Function Ratios and their Inverse // ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR. // ACM Transactions on Mathematical Software, Vol. 12, No. 4, // December 1986, Pages 377-393. // // See equation 32. // BOOST_MATH_STD_USING T t; if(p < 0.5) { t = sqrt(-2 * log(p)); } else { t = sqrt(-2 * log(q)); } static const double a[4] = { 3.31125922108741, 11.6616720288968, 4.28342155967104, 0.213623493715853 }; static const double b[5] = { 1, 6.61053765625462, 6.40691597760039, 1.27364489782223, 0.3611708101884203e-1 }; T s = t - tools::evaluate_polynomial(a, t) / tools::evaluate_polynomial(b, t); if(p < 0.5) s = -s; return s; } template
T didonato_SN(T a, T x, unsigned N, T tolerance = 0) { // // Computation of the Incomplete Gamma Function Ratios and their Inverse // ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR. // ACM Transactions on Mathematical Software, Vol. 12, No. 4, // December 1986, Pages 377-393. // // See equation 34. // T sum = 1; if(N >= 1) { T partial = x / (a + 1); sum += partial; for(unsigned i = 2; i <= N; ++i) { partial *= x / (a + i); sum += partial; if(partial < tolerance) break; } } return sum; } template
inline T didonato_FN(T p, T a, T x, unsigned N, T tolerance, const Policy& pol) { // // Computation of the Incomplete Gamma Function Ratios and their Inverse // ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR. // ACM Transactions on Mathematical Software, Vol. 12, No. 4, // December 1986, Pages 377-393. // // See equation 34. // BOOST_MATH_STD_USING T u = log(p) + boost::math::lgamma(a + 1, pol); return exp((u + x - log(didonato_SN(a, x, N, tolerance))) / a); } template
T find_inverse_gamma(T a, T p, T q, const Policy& pol) { // // In order to understand what's going on here, you will // need to refer to: // // Computation of the Incomplete Gamma Function Ratios and their Inverse // ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR. // ACM Transactions on Mathematical Software, Vol. 12, No. 4, // December 1986, Pages 377-393. // BOOST_MATH_STD_USING T result; if(a == 1) result = -log(q); else if(a < 1) { T g = boost::math::tgamma(a, pol); T b = q * g; if((b > 0.6) || ((b >= 0.45) && (a >= 0.3))) { // DiDonato & Morris Eq 21: // // There is a slight variation from DiDonato and Morris here: // the first form given here is unstable when p is close to 1, // making it impossible to compute the inverse of Q(a,x) for small // q. Fortunately the second form works perfectly well in this case. // T u; if((b * q > 1e-8) && (q > 1e-5)) { u = pow(p * g * a, 1 / a); } else { u = exp((-q / a) - constants::euler
()); } result = u / (1 - (u / (a + 1))); } else if((a < 0.3) && (b >= 0.35)) { // DiDonato & Morris Eq 22: T t = exp(-constants::euler
() - b); T u = t * exp(t); result = t * exp(u); } else if((b > 0.15) || (a >= 0.3)) { // DiDonato & Morris Eq 23: T y = -log(b); T u = y - (1 - a) * log(y); result = y - (1 - a) * log(u) - log(1 + (1 - a) / (1 + u)); } else if (b > 0.1) { // DiDonato & Morris Eq 24: T y = -log(b); T u = y - (1 - a) * log(y); result = y - (1 - a) * log(u) - log((u * u + 2 * (3 - a) * u + (2 - a) * (3 - a)) / (u * u + (5 - a) * u + 2)); } else { // DiDonato & Morris Eq 25: T y = -log(b); T c1 = (a - 1) * log(y); T c1_2 = c1 * c1; T c1_3 = c1_2 * c1; T c1_4 = c1_2 * c1_2; T a_2 = a * a; T a_3 = a_2 * a; T c2 = (a - 1) * (1 + c1); T c3 = (a - 1) * (-(c1_2 / 2) + (a - 2) * c1 + (3 * a - 5) / 2); T c4 = (a - 1) * ((c1_3 / 3) - (3 * a - 5) * c1_2 / 2 + (a_2 - 6 * a + 7) * c1 + (11 * a_2 - 46 * a + 47) / 6); T c5 = (a - 1) * (-(c1_4 / 4) + (11 * a - 17) * c1_3 / 6 + (-3 * a_2 + 13 * a -13) * c1_2 + (2 * a_3 - 25 * a_2 + 72 * a - 61) * c1 / 2 + (25 * a_3 - 195 * a_2 + 477 * a - 379) / 12); T y_2 = y * y; T y_3 = y_2 * y; T y_4 = y_2 * y_2; result = y + c1 + (c2 / y) + (c3 / y_2) + (c4 / y_3) + (c5 / y_4); } } else { // DiDonato and Morris Eq 31: T s = find_inverse_s(p, q); T s_2 = s * s; T s_3 = s_2 * s; T s_4 = s_2 * s_2; T s_5 = s_4 * s; T ra = sqrt(a); T w = a + s * ra + (s * s -1) / 3; w += (s_3 - 7 * s) / (36 * ra); w -= (3 * s_4 + 7 * s_2 - 16) / (810 * a); w += (9 * s_5 + 256 * s_3 - 433 * s) / (38880 * a * ra); if((a >= 500) && (fabs(1 - w / a) < 1e-6)) { result = w; } else if (p > 0.5) { if(w < 3 * a) { result = w; } else { T D = (std::max)(T(2), a * (a - 1)); T lg = boost::math::lgamma(a, pol); T lb = log(q) + lg; if(lb < -D * 2.3) { // DiDonato and Morris Eq 25: T y = -lb; T c1 = (a - 1) * log(y); T c1_2 = c1 * c1; T c1_3 = c1_2 * c1; T c1_4 = c1_2 * c1_2; T a_2 = a * a; T a_3 = a_2 * a; T c2 = (a - 1) * (1 + c1); T c3 = (a - 1) * (-(c1_2 / 2) + (a - 2) * c1 + (3 * a - 5) / 2); T c4 = (a - 1) * ((c1_3 / 3) - (3 * a - 5) * c1_2 / 2 + (a_2 - 6 * a + 7) * c1 + (11 * a_2 - 46 * a + 47) / 6); T c5 = (a - 1) * (-(c1_4 / 4) + (11 * a - 17) * c1_3 / 6 + (-3 * a_2 + 13 * a -13) * c1_2 + (2 * a_3 - 25 * a_2 + 72 * a - 61) * c1 / 2 + (25 * a_3 - 195 * a_2 + 477 * a - 379) / 12); T y_2 = y * y; T y_3 = y_2 * y; T y_4 = y_2 * y_2; result = y + c1 + (c2 / y) + (c3 / y_2) + (c4 / y_3) + (c5 / y_4); } else { // DiDonato and Morris Eq 33: T u = -lb + (a - 1) * log(w) - log(1 + (1 - a) / (1 + w)); result = -lb + (a - 1) * log(u) - log(1 + (1 - a) / (1 + u)); } } } else { // DiDonato and Morris Eq 35: T z = didonato_FN(p, a, w, 0, T(0), pol); z = didonato_FN(p, a, z, 2, T(0), pol); z = didonato_FN(p, a, z, 2, T(0), pol); z = didonato_FN(p, a, z, 3, T(0), pol); if((z <= 0.01 * (a + 1)) || (z > 0.7 * (a + 1))) { result = z; } else { // DiDonato and Morris Eq 36: T zb = didonato_FN(p, a, z, 100, T(1e-4), pol); T u = log(p) + boost::math::lgamma(a + 1, pol); result = zb * (1 - (a * log(zb) - zb - u + log(didonato_SN(a, z, 100, T(1e-4)))) / (a - zb)); } } } return result; } template
struct gamma_p_inverse_func { gamma_p_inverse_func(T a_, T p_, bool inv) : a(a_), p(p_), invert(inv) { // // If p is too near 1 then P(x) - p suffers from cancellation // errors causing our root-finding algorithms to "thrash", better // to invert in this case and calculate Q(x) - (1-p) instead. // // Of course if p is *very* close to 1, then the answer we get will // be inaccurate anyway (because there's not enough information in p) // but at least we will converge on the (inaccurate) answer quickly. // if(p > 0.9) { p = 1 - p; invert = !invert; } } std::tr1::tuple
operator()(const T& x)const { BOOST_FPU_EXCEPTION_GUARD // // Calculate P(x) - p and the first two derivates, or if the invert // flag is set, then Q(x) - q and it's derivatives. // typedef typename policies::evaluation
::type value_type; typedef typename lanczos::lanczos
::type evaluation_type; typedef typename policies::normalise< Policy, policies::promote_float
, policies::promote_double
, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; BOOST_MATH_STD_USING // For ADL of std functions. T f, f1; value_type ft; f = static_cast
(boost::math::detail::gamma_incomplete_imp( static_cast
(a), static_cast
(x), true, invert, forwarding_policy(), &ft)); f1 = static_cast
(ft); T f2; T div = (a - x - 1) / x; f2 = f1; if((fabs(div) > 1) && (tools::max_value
() / fabs(div) < f2)) { // overflow: f2 = -tools::max_value
() / 2; } else { f2 *= div; } if(invert) { f1 = -f1; f2 = -f2; } return std::tr1::make_tuple(f - p, f1, f2); } private: T a, p; bool invert; }; template
T gamma_p_inv_imp(T a, T p, const Policy& pol) { BOOST_MATH_STD_USING // ADL of std functions. static const char* function = "boost::math::gamma_p_inv<%1%>(%1%, %1%)"; if(a <= 0) policies::raise_domain_error
(function, "Argument a in the incomplete gamma function inverse must be >= 0 (got a=%1%).", a, pol); if((p < 0) || (p > 1)) policies::raise_domain_error
(function, "Probabilty must be in the range [0,1] in the incomplete gamma function inverse (got p=%1%).", p, pol); if(p == 1) return tools::max_value
(); if(p == 0) return 0; T guess = detail::find_inverse_gamma(a, p, 1 - p, pol); T lower = tools::min_value
(); if(guess <= lower) guess = tools::min_value
(); // // Work out how many digits to converge to, normally this is // 2/3 of the digits in T, but if the first derivative is very // large convergence is slow, so we'll bump it up to full // precision to prevent premature termination of the root-finding routine. // unsigned digits = (policies::digits
() * 2) / 3; if((a < 0.125) && (fabs(gamma_p_derivative(a, guess, pol)) > 1 / sqrt(tools::epsilon
()))) digits = policies::digits
() - 2; // // Go ahead and iterate: // guess = tools::halley_iterate( detail::gamma_p_inverse_func
(a, p, false), guess, lower, tools::max_value
(), digits); if(guess == lower) guess = policies::raise_underflow_error
(function, "Expected result known to be non-zero, but is smaller than the smallest available number.", pol); return guess; } template
T gamma_q_inv_imp(T a, T q, const Policy& pol) { BOOST_MATH_STD_USING // ADL of std functions. static const char* function = "boost::math::gamma_q_inv<%1%>(%1%, %1%)"; if(a <= 0) policies::raise_domain_error
(function, "Argument a in the incomplete gamma function inverse must be >= 0 (got a=%1%).", a, pol); if((q < 0) || (q > 1)) policies::raise_domain_error
(function, "Probabilty must be in the range [0,1] in the incomplete gamma function inverse (got q=%1%).", q, pol); if(q == 0) return tools::max_value
(); if(q == 1) return 0; T guess = detail::find_inverse_gamma(a, 1 - q, q, pol); T lower = tools::min_value
(); if(guess <= lower) guess = tools::min_value
(); // // Work out how many digits to converge to, normally this is // 2/3 of the digits in T, but if the first derivative is very // large convergence is slow, so we'll bump it up to full // precision to prevent premature termination of the root-finding routine. // unsigned digits = (policies::digits
() * 2) / 3; if((a < 0.125) && (fabs(gamma_p_derivative(a, guess, pol)) > 1 / sqrt(tools::epsilon
()))) digits = policies::digits
(); // // Go ahead and iterate: // guess = tools::halley_iterate( detail::gamma_p_inverse_func
(a, q, true), guess, lower, tools::max_value
(), digits); if(guess == lower) guess = policies::raise_underflow_error
(function, "Expected result known to be non-zero, but is smaller than the smallest available number.", pol); return guess; } } // namespace detail template
inline typename tools::promote_args
::type gamma_p_inv(T1 a, T2 p, const Policy& pol) { typedef typename tools::promote_args
::type result_type; return detail::gamma_p_inv_imp( static_cast
(a), static_cast
(p), pol); } template
inline typename tools::promote_args
::type gamma_q_inv(T1 a, T2 p, const Policy& pol) { typedef typename tools::promote_args
::type result_type; return detail::gamma_q_inv_imp( static_cast
(a), static_cast
(p), pol); } template
inline typename tools::promote_args
::type gamma_p_inv(T1 a, T2 p) { return gamma_p_inv(a, p, policies::policy<>()); } template
inline typename tools::promote_args
::type gamma_q_inv(T1 a, T2 p) { return gamma_q_inv(a, p, policies::policy<>()); } } // namespace math } // namespace boost #endif // BOOST_MATH_SPECIAL_FUNCTIONS_IGAMMA_INVERSE_HPP
igamma_inverse.hpp
Page URL
File URL
Prev
19/24
Next
Download
( 14 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.