DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL #define BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL namespace boost{ namespace math{ namespace detail{ // // lgamma for small arguments: // template
T lgamma_small_imp(T z, T zm1, T zm2, const mpl::int_<64>&, const Policy& /* l */, const L&) { // This version uses rational approximations for small // values of z accurate enough for 64-bit mantissas // (80-bit long doubles), works well for 53-bit doubles as well. // L is only used to select the Lanczos function. BOOST_MATH_STD_USING // for ADL of std names T result = 0; if(z < tools::epsilon
()) { result = -log(z); } else if((zm1 == 0) || (zm2 == 0)) { // nothing to do, result is zero.... } else if(z > 2) { // // Begin by performing argument reduction until // z is in [2,3): // if(z >= 3) { do { z -= 1; zm2 -= 1; result += log(z); }while(z >= 3); // Update zm2, we need it below: zm2 = z - 2; } // // Use the following form: // // lgamma(z) = (z-2)(z+1)(Y + R(z-2)) // // where R(z-2) is a rational approximation optimised for // low absolute error - as long as it's absolute error // is small compared to the constant Y - then any rounding // error in it's computation will get wiped out. // // R(z-2) has the following properties: // // At double: Max error found: 4.231e-18 // At long double: Max error found: 1.987e-21 // Maximum Deviation Found (approximation error): 5.900e-24 // static const T P[] = { static_cast
(-0.180355685678449379109e-1L), static_cast
(0.25126649619989678683e-1L), static_cast
(0.494103151567532234274e-1L), static_cast
(0.172491608709613993966e-1L), static_cast
(-0.259453563205438108893e-3L), static_cast
(-0.541009869215204396339e-3L), static_cast
(-0.324588649825948492091e-4L) }; static const T Q[] = { static_cast
(0.1e1), static_cast
(0.196202987197795200688e1L), static_cast
(0.148019669424231326694e1L), static_cast
(0.541391432071720958364e0L), static_cast
(0.988504251128010129477e-1L), static_cast
(0.82130967464889339326e-2L), static_cast
(0.224936291922115757597e-3L), static_cast
(-0.223352763208617092964e-6L) }; static const float Y = 0.158963680267333984375e0f; T r = zm2 * (z + 1); T R = tools::evaluate_polynomial(P, zm2); R /= tools::evaluate_polynomial(Q, zm2); result += r * Y + r * R; } else { // // If z is less than 1 use recurrance to shift to // z in the interval [1,2]: // if(z < 1) { result += -log(z); zm2 = zm1; zm1 = z; z += 1; } // // Two approximations, on for z in [1,1.5] and // one for z in [1.5,2]: // if(z <= 1.5) { // // Use the following form: // // lgamma(z) = (z-1)(z-2)(Y + R(z-1)) // // where R(z-1) is a rational approximation optimised for // low absolute error - as long as it's absolute error // is small compared to the constant Y - then any rounding // error in it's computation will get wiped out. // // R(z-1) has the following properties: // // At double precision: Max error found: 1.230011e-17 // At 80-bit long double precision: Max error found: 5.631355e-21 // Maximum Deviation Found: 3.139e-021 // Expected Error Term: 3.139e-021 // static const float Y = 0.52815341949462890625f; static const T P[] = { static_cast
(0.490622454069039543534e-1L), static_cast
(-0.969117530159521214579e-1L), static_cast
(-0.414983358359495381969e0L), static_cast
(-0.406567124211938417342e0L), static_cast
(-0.158413586390692192217e0L), static_cast
(-0.240149820648571559892e-1L), static_cast
(-0.100346687696279557415e-2L) }; static const T Q[] = { static_cast
(0.1e1L), static_cast
(0.302349829846463038743e1L), static_cast
(0.348739585360723852576e1L), static_cast
(0.191415588274426679201e1L), static_cast
(0.507137738614363510846e0L), static_cast
(0.577039722690451849648e-1L), static_cast
(0.195768102601107189171e-2L) }; T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1); T prefix = zm1 * zm2; result += prefix * Y + prefix * r; } else { // // Use the following form: // // lgamma(z) = (2-z)(1-z)(Y + R(2-z)) // // where R(2-z) is a rational approximation optimised for // low absolute error - as long as it's absolute error // is small compared to the constant Y - then any rounding // error in it's computation will get wiped out. // // R(2-z) has the following properties: // // At double precision, max error found: 1.797565e-17 // At 80-bit long double precision, max error found: 9.306419e-21 // Maximum Deviation Found: 2.151e-021 // Expected Error Term: 2.150e-021 // static const float Y = 0.452017307281494140625f; static const T P[] = { static_cast
(-0.292329721830270012337e-1L), static_cast
(0.144216267757192309184e0L), static_cast
(-0.142440390738631274135e0L), static_cast
(0.542809694055053558157e-1L), static_cast
(-0.850535976868336437746e-2L), static_cast
(0.431171342679297331241e-3L) }; static const T Q[] = { static_cast
(0.1e1), static_cast
(-0.150169356054485044494e1L), static_cast
(0.846973248876495016101e0L), static_cast
(-0.220095151814995745555e0L), static_cast
(0.25582797155975869989e-1L), static_cast
(-0.100666795539143372762e-2L), static_cast
(-0.827193521891290553639e-6L) }; T r = zm2 * zm1; T R = tools::evaluate_polynomial(P, -zm2) / tools::evaluate_polynomial(Q, -zm2); result += r * Y + r * R; } } return result; } template
T lgamma_small_imp(T z, T zm1, T zm2, const mpl::int_<113>&, const Policy& /* l */, const L&) { // // This version uses rational approximations for small // values of z accurate enough for 113-bit mantissas // (128-bit long doubles). // BOOST_MATH_STD_USING // for ADL of std names T result = 0; if(z < tools::epsilon
()) { result = -log(z); BOOST_MATH_INSTRUMENT_CODE(result); } else if((zm1 == 0) || (zm2 == 0)) { // nothing to do, result is zero.... } else if(z > 2) { // // Begin by performing argument reduction until // z is in [2,3): // if(z >= 3) { do { z -= 1; result += log(z); }while(z >= 3); zm2 = z - 2; } BOOST_MATH_INSTRUMENT_CODE(zm2); BOOST_MATH_INSTRUMENT_CODE(z); BOOST_MATH_INSTRUMENT_CODE(result); // // Use the following form: // // lgamma(z) = (z-2)(z+1)(Y + R(z-2)) // // where R(z-2) is a rational approximation optimised for // low absolute error - as long as it's absolute error // is small compared to the constant Y - then any rounding // error in it's computation will get wiped out. // // Maximum Deviation Found (approximation error) 3.73e-37 static const T P[] = { -0.018035568567844937910504030027467476655L, 0.013841458273109517271750705401202404195L, 0.062031842739486600078866923383017722399L, 0.052518418329052161202007865149435256093L, 0.01881718142472784129191838493267755758L, 0.0025104830367021839316463675028524702846L, -0.00021043176101831873281848891452678568311L, -0.00010249622350908722793327719494037981166L, -0.11381479670982006841716879074288176994e-4L, -0.49999811718089980992888533630523892389e-6L, -0.70529798686542184668416911331718963364e-8L }; static const T Q[] = { 1L, 2.5877485070422317542808137697939233685L, 2.8797959228352591788629602533153837126L, 1.8030885955284082026405495275461180977L, 0.69774331297747390169238306148355428436L, 0.17261566063277623942044077039756583802L, 0.02729301254544230229429621192443000121L, 0.0026776425891195270663133581960016620433L, 0.00015244249160486584591370355730402168106L, 0.43997034032479866020546814475414346627e-5L, 0.46295080708455613044541885534408170934e-7L, -0.93326638207459533682980757982834180952e-11L, 0.42316456553164995177177407325292867513e-13L }; T R = tools::evaluate_polynomial(P, zm2); R /= tools::evaluate_polynomial(Q, zm2); static const float Y = 0.158963680267333984375F; T r = zm2 * (z + 1); result += r * Y + r * R; BOOST_MATH_INSTRUMENT_CODE(result); } else { // // If z is less than 1 use recurrance to shift to // z in the interval [1,2]: // if(z < 1) { result += -log(z); zm2 = zm1; zm1 = z; z += 1; } BOOST_MATH_INSTRUMENT_CODE(result); BOOST_MATH_INSTRUMENT_CODE(z); BOOST_MATH_INSTRUMENT_CODE(zm2); // // Three approximations, on for z in [1,1.35], [1.35,1.625] and [1.625,1] // if(z <= 1.35) { // // Use the following form: // // lgamma(z) = (z-1)(z-2)(Y + R(z-1)) // // where R(z-1) is a rational approximation optimised for // low absolute error - as long as it's absolute error // is small compared to the constant Y - then any rounding // error in it's computation will get wiped out. // // R(z-1) has the following properties: // // Maximum Deviation Found (approximation error) 1.659e-36 // Expected Error Term (theoretical error) 1.343e-36 // Max error found at 128-bit long double precision 1.007e-35 // static const float Y = 0.54076099395751953125f; static const T P[] = { 0.036454670944013329356512090082402429697L, -0.066235835556476033710068679907798799959L, -0.67492399795577182387312206593595565371L, -1.4345555263962411429855341651960000166L, -1.4894319559821365820516771951249649563L, -0.87210277668067964629483299712322411566L, -0.29602090537771744401524080430529369136L, -0.0561832587517836908929331992218879676L, -0.0053236785487328044334381502530383140443L, -0.00018629360291358130461736386077971890789L, -0.10164985672213178500790406939467614498e-6L, 0.13680157145361387405588201461036338274e-8L }; static const T Q[] = { 1, 4.9106336261005990534095838574132225599L, 10.258804800866438510889341082793078432L, 11.88588976846826108836629960537466889L, 8.3455000546999704314454891036700998428L, 3.6428823682421746343233362007194282703L, 0.97465989807254572142266753052776132252L, 0.15121052897097822172763084966793352524L, 0.012017363555383555123769849654484594893L, 0.0003583032812720649835431669893011257277L }; T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1); T prefix = zm1 * zm2; result += prefix * Y + prefix * r; BOOST_MATH_INSTRUMENT_CODE(result); } else if(z <= 1.625) { // // Use the following form: // // lgamma(z) = (2-z)(1-z)(Y + R(2-z)) // // where R(2-z) is a rational approximation optimised for // low absolute error - as long as it's absolute error // is small compared to the constant Y - then any rounding // error in it's computation will get wiped out. // // R(2-z) has the following properties: // // Max error found at 128-bit long double precision 9.634e-36 // Maximum Deviation Found (approximation error) 1.538e-37 // Expected Error Term (theoretical error) 2.350e-38 // static const float Y = 0.483787059783935546875f; static const T P[] = { -0.017977422421608624353488126610933005432L, 0.18484528905298309555089509029244135703L, -0.40401251514859546989565001431430884082L, 0.40277179799147356461954182877921388182L, -0.21993421441282936476709677700477598816L, 0.069595742223850248095697771331107571011L, -0.012681481427699686635516772923547347328L, 0.0012489322866834830413292771335113136034L, -0.57058739515423112045108068834668269608e-4L, 0.8207548771933585614380644961342925976e-6L }; static const T Q[] = { 1, -2.9629552288944259229543137757200262073L, 3.7118380799042118987185957298964772755L, -2.5569815272165399297600586376727357187L, 1.0546764918220835097855665680632153367L, -0.26574021300894401276478730940980810831L, 0.03996289731752081380552901986471233462L, -0.0033398680924544836817826046380586480873L, 0.00013288854760548251757651556792598235735L, -0.17194794958274081373243161848194745111e-5L }; T r = zm2 * zm1; T R = tools::evaluate_polynomial(P, 0.625 - zm1) / tools::evaluate_polynomial(Q, 0.625 - zm1); result += r * Y + r * R; BOOST_MATH_INSTRUMENT_CODE(result); } else { // // Same form as above. // // Max error found (at 128-bit long double precision) 1.831e-35 // Maximum Deviation Found (approximation error) 8.588e-36 // Expected Error Term (theoretical error) 1.458e-36 // static const float Y = 0.443811893463134765625f; static const T P[] = { -0.021027558364667626231512090082402429494L, 0.15128811104498736604523586803722368377L, -0.26249631480066246699388544451126410278L, 0.21148748610533489823742352180628489742L, -0.093964130697489071999873506148104370633L, 0.024292059227009051652542804957550866827L, -0.0036284453226534839926304745756906117066L, 0.0002939230129315195346843036254392485984L, -0.11088589183158123733132268042570710338e-4L, 0.13240510580220763969511741896361984162e-6L }; static const T Q[] = { 1, -2.4240003754444040525462170802796471996L, 2.4868383476933178722203278602342786002L, -1.4047068395206343375520721509193698547L, 0.47583809087867443858344765659065773369L, -0.09865724264554556400463655444270700132L, 0.012238223514176587501074150988445109735L, -0.00084625068418239194670614419707491797097L, 0.2796574430456237061420839429225710602e-4L, -0.30202973883316730694433702165188835331e-6L }; // (2 - x) * (1 - x) * (c + R(2 - x)) T r = zm2 * zm1; T R = tools::evaluate_polynomial(P, -zm2) / tools::evaluate_polynomial(Q, -zm2); result += r * Y + r * R; BOOST_MATH_INSTRUMENT_CODE(result); } } BOOST_MATH_INSTRUMENT_CODE(result); return result; } template
T lgamma_small_imp(T z, T zm1, T zm2, const mpl::int_<0>&, const Policy& pol, const L&) { // // No rational approximations are available because either // T has no numeric_limits support (so we can't tell how // many digits it has), or T has more digits than we know // what to do with.... we do have a Lanczos approximation // though, and that can be used to keep errors under control. // BOOST_MATH_STD_USING // for ADL of std names T result = 0; if(z < tools::epsilon
()) { result = -log(z); } else if(z < 0.5) { // taking the log of tgamma reduces the error, no danger of overflow here: result = log(gamma_imp(z, pol, L())); } else if(z >= 3) { // taking the log of tgamma reduces the error, no danger of overflow here: result = log(gamma_imp(z, pol, L())); } else if(z >= 1.5) { // special case near 2: T dz = zm2; result = dz * log((z + L::g() - T(0.5)) / boost::math::constants::e
()); result += boost::math::log1p(dz / (L::g() + T(1.5)), pol) * T(1.5); result += boost::math::log1p(L::lanczos_sum_near_2(dz), pol); } else { // special case near 1: T dz = zm1; result = dz * log((z + L::g() - T(0.5)) / boost::math::constants::e
()); result += boost::math::log1p(dz / (L::g() + T(0.5)), pol) / 2; result += boost::math::log1p(L::lanczos_sum_near_1(dz), pol); } return result; } }}} // namespaces #endif // BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
lgamma_small.hpp
Page URL
File URL
Prev
21/24
Next
Download
( 18 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.