DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// Copyright John Maddock 2006, 2007. // Copyright Paul A. Bristow 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_STATS_CAUCHY_HPP #define BOOST_STATS_CAUCHY_HPP #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4127) // conditional expression is constant #endif #include
#include
#include
#include
#include
#include
namespace boost{ namespace math { template
class cauchy_distribution; namespace detail { template
RealType cdf_imp(const cauchy_distribution
& dist, const RealType& x, bool complement) { // // This calculates the cdf of the Cauchy distribution and/or its complement. // // The usual formula for the Cauchy cdf is: // // cdf = 0.5 + atan(x)/pi // // But that suffers from cancellation error as x -> -INF. // // Recall that for x < 0: // // atan(x) = -pi/2 - atan(1/x) // // Substituting into the above we get: // // CDF = -atan(1/x) ; x < 0 // // So the proceedure is to calculate the cdf for -fabs(x) // using the above formula, and then subtract from 1 when required // to get the result. // BOOST_MATH_STD_USING // for ADL of std functions static const char* function = "boost::math::cdf(cauchy<%1%>&, %1%)"; RealType result; RealType location = dist.location(); RealType scale = dist.scale(); if(false == detail::check_location(function, location, &result, Policy())) { return result; } if(false == detail::check_scale(function, scale, &result, Policy())) { return result; } if(std::numeric_limits
::has_infinity && x == std::numeric_limits
::infinity()) { // cdf +infinity is unity. return static_cast
((complement) ? 0 : 1); } if(std::numeric_limits
::has_infinity && x == -std::numeric_limits
::infinity()) { // cdf -infinity is zero. return static_cast
((complement) ? 1 : 0); } if(false == detail::check_x(function, x, &result, Policy())) { // Catches x == NaN return result; } RealType mx = -fabs((x - location) / scale); // scale is > 0 if(mx > -tools::epsilon
() / 8) { // special case first: x extremely close to location. return 0.5; } result = -atan(1 / mx) / constants::pi
(); return (((x > location) != complement) ? 1 - result : result); } // cdf template
RealType quantile_imp( const cauchy_distribution
& dist, const RealType& p, bool complement) { // This routine implements the quantile for the Cauchy distribution, // the value p may be the probability, or its complement if complement=true. // // The procedure first performs argument reduction on p to avoid error // when calculating the tangent, then calulates the distance from the // mid-point of the distribution. This is either added or subtracted // from the location parameter depending on whether `complement` is true. // static const char* function = "boost::math::quantile(cauchy<%1%>&, %1%)"; BOOST_MATH_STD_USING // for ADL of std functions RealType result; RealType location = dist.location(); RealType scale = dist.scale(); if(false == detail::check_location(function, location, &result, Policy())) { return result; } if(false == detail::check_scale(function, scale, &result, Policy())) { return result; } if(false == detail::check_probability(function, p, &result, Policy())) { return result; } // Special cases: if(p == 1) { return (complement ? -1 : 1) * policies::raise_overflow_error
(function, 0, Policy()); } if(p == 0) { return (complement ? 1 : -1) * policies::raise_overflow_error
(function, 0, Policy()); } RealType P = p - floor(p); // argument reduction of p: if(P > 0.5) { P = P - 1; } if(P == 0.5) // special case: { return location; } result = -scale / tan(constants::pi
() * P); return complement ? location - result : location + result; } // quantile } // namespace detail template
> class cauchy_distribution { public: typedef RealType value_type; typedef Policy policy_type; cauchy_distribution(RealType location = 0, RealType scale = 1) : m_a(location), m_hg(scale) { static const char* function = "boost::math::cauchy_distribution<%1%>::cauchy_distribution"; RealType result; detail::check_location(function, location, &result, Policy()); detail::check_scale(function, scale, &result, Policy()); } // cauchy_distribution RealType location()const { return m_a; } RealType scale()const { return m_hg; } private: RealType m_a; // The location, this is the median of the distribution. RealType m_hg; // The scale )or shape), this is the half width at half height. }; typedef cauchy_distribution
cauchy; template
inline const std::pair
range(const cauchy_distribution
&) { // Range of permissible values for random variable x. using boost::math::tools::max_value; return std::pair
(-max_value
(), max_value
()); // - to + infinity. } template
inline const std::pair
support(const cauchy_distribution
& ) { // Range of supported values for random variable x. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. return std::pair
(-tools::max_value
(), tools::max_value
()); // - to + infinity. } template
inline RealType pdf(const cauchy_distribution
& dist, const RealType& x) { BOOST_MATH_STD_USING // for ADL of std functions static const char* function = "boost::math::pdf(cauchy<%1%>&, %1%)"; RealType result; RealType location = dist.location(); RealType scale = dist.scale(); if(false == detail::check_scale("boost::math::pdf(cauchy<%1%>&, %1%)", scale, &result, Policy())) { return result; } if(false == detail::check_location("boost::math::pdf(cauchy<%1%>&, %1%)", location, &result, Policy())) { return result; } if((boost::math::isinf)(x)) { return 0; // pdf + and - infinity is zero. } // These produce MSVC 4127 warnings, so the above used instead. //if(std::numeric_limits
::has_infinity && abs(x) == std::numeric_limits
::infinity()) //{ // pdf + and - infinity is zero. // return 0; //} if(false == detail::check_x(function, x, &result, Policy())) { // Catches x = NaN return result; } RealType xs = (x - location) / scale; result = 1 / (constants::pi
() * scale * (1 + xs * xs)); return result; } // pdf template
inline RealType cdf(const cauchy_distribution
& dist, const RealType& x) { return detail::cdf_imp(dist, x, false); } // cdf template
inline RealType quantile(const cauchy_distribution
& dist, const RealType& p) { return detail::quantile_imp(dist, p, false); } // quantile template
inline RealType cdf(const complemented2_type
, RealType>& c) { return detail::cdf_imp(c.dist, c.param, true); } // cdf complement template
inline RealType quantile(const complemented2_type
, RealType>& c) { return detail::quantile_imp(c.dist, c.param, true); } // quantile complement template
inline RealType mean(const cauchy_distribution
&) { // There is no mean: typedef typename Policy::assert_undefined_type assert_type; BOOST_STATIC_ASSERT(assert_type::value == 0); return policies::raise_domain_error
( "boost::math::mean(cauchy<%1%>&)", "The Cauchy distribution does not have a mean: " "the only possible return value is %1%.", std::numeric_limits
::quiet_NaN(), Policy()); } template
inline RealType variance(const cauchy_distribution
& /*dist*/) { // There is no variance: typedef typename Policy::assert_undefined_type assert_type; BOOST_STATIC_ASSERT(assert_type::value == 0); return policies::raise_domain_error
( "boost::math::variance(cauchy<%1%>&)", "The Cauchy distribution does not have a variance: " "the only possible return value is %1%.", std::numeric_limits
::quiet_NaN(), Policy()); } template
inline RealType mode(const cauchy_distribution
& dist) { return dist.location(); } template
inline RealType median(const cauchy_distribution
& dist) { return dist.location(); } template
inline RealType skewness(const cauchy_distribution
& /*dist*/) { // There is no skewness: typedef typename Policy::assert_undefined_type assert_type; BOOST_STATIC_ASSERT(assert_type::value == 0); return policies::raise_domain_error
( "boost::math::skewness(cauchy<%1%>&)", "The Cauchy distribution does not have a skewness: " "the only possible return value is %1%.", std::numeric_limits
::quiet_NaN(), Policy()); // infinity? } template
inline RealType kurtosis(const cauchy_distribution
& /*dist*/) { // There is no kurtosis: typedef typename Policy::assert_undefined_type assert_type; BOOST_STATIC_ASSERT(assert_type::value == 0); return policies::raise_domain_error
( "boost::math::kurtosis(cauchy<%1%>&)", "The Cauchy distribution does not have a kurtosis: " "the only possible return value is %1%.", std::numeric_limits
::quiet_NaN(), Policy()); } template
inline RealType kurtosis_excess(const cauchy_distribution
& /*dist*/) { // There is no kurtosis excess: typedef typename Policy::assert_undefined_type assert_type; BOOST_STATIC_ASSERT(assert_type::value == 0); return policies::raise_domain_error
( "boost::math::kurtosis_excess(cauchy<%1%>&)", "The Cauchy distribution does not have a kurtosis: " "the only possible return value is %1%.", std::numeric_limits
::quiet_NaN(), Policy()); } } // namespace math } // namespace boost #ifdef _MSC_VER #pragma warning(pop) #endif // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include
#endif // BOOST_STATS_CAUCHY_HPP
cauchy.hpp
Page URL
File URL
Prev
4/23
Next
Download
( 11 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.