DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// boost\math\distributions\binomial.hpp // Copyright John Maddock 2006. // Copyright Paul A. Bristow 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // http://en.wikipedia.org/wiki/binomial_distribution // Binomial distribution is the discrete probability distribution of // the number (k) of successes, in a sequence of // n independent (yes or no, success or failure) Bernoulli trials. // It expresses the probability of a number of events occurring in a fixed time // if these events occur with a known average rate (probability of success), // and are independent of the time since the last event. // The number of cars that pass through a certain point on a road during a given period of time. // The number of spelling mistakes a secretary makes while typing a single page. // The number of phone calls at a call center per minute. // The number of times a web server is accessed per minute. // The number of light bulbs that burn out in a certain amount of time. // The number of roadkill found per unit length of road // http://en.wikipedia.org/wiki/binomial_distribution // Given a sample of N measured values k[i], // we wish to estimate the value of the parameter x (mean) // of the binomial population from which the sample was drawn. // To calculate the maximum likelihood value = 1/N sum i = 1 to N of k[i] // Also may want a function for EXACTLY k. // And probability that there are EXACTLY k occurrences is // exp(-x) * pow(x, k) / factorial(k) // where x is expected occurrences (mean) during the given interval. // For example, if events occur, on average, every 4 min, // and we are interested in number of events occurring in 10 min, // then x = 10/4 = 2.5 // http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm // The binomial distribution is used when there are // exactly two mutually exclusive outcomes of a trial. // These outcomes are appropriately labeled "success" and "failure". // The binomial distribution is used to obtain // the probability of observing x successes in N trials, // with the probability of success on a single trial denoted by p. // The binomial distribution assumes that p is fixed for all trials. // P(x, p, n) = n!/(x! * (n-x)!) * p^x * (1-p)^(n-x) // http://mathworld.wolfram.com/BinomialCoefficient.html // The binomial coefficient (n; k) is the number of ways of picking // k unordered outcomes from n possibilities, // also known as a combination or combinatorial number. // The symbols _nC_k and (n; k) are used to denote a binomial coefficient, // and are sometimes read as "n choose k." // (n; k) therefore gives the number of k-subsets possible out of a set of n distinct items. // For example: // The 2-subsets of {1,2,3,4} are the six pairs {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}, so (4; 2)==6. // http://functions.wolfram.com/GammaBetaErf/Binomial/ for evaluation. // But note that the binomial distribution // (like others including the poisson, negative binomial & Bernoulli) // is strictly defined as a discrete function: only integral values of k are envisaged. // However because of the method of calculation using a continuous gamma function, // it is convenient to treat it as if a continous function, // and permit non-integral values of k. // To enforce the strict mathematical model, users should use floor or ceil functions // on k outside this function to ensure that k is integral. #ifndef BOOST_MATH_SPECIAL_BINOMIAL_HPP #define BOOST_MATH_SPECIAL_BINOMIAL_HPP #include
#include
// for incomplete beta. #include
// complements #include
// error checks #include
// error checks #include
// isnan. #include
// for root finding. #include
namespace boost { namespace math { template
class binomial_distribution; namespace binomial_detail{ // common error checking routines for binomial distribution functions: template
inline bool check_N(const char* function, const RealType& N, RealType* result, const Policy& pol) { if((N < 0) || !(boost::math::isfinite)(N)) { *result = policies::raise_domain_error
( function, "Number of Trials argument is %1%, but must be >= 0 !", N, pol); return false; } return true; } template
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) { if((p < 0) || (p > 1) || !(boost::math::isfinite)(p)) { *result = policies::raise_domain_error
( function, "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); return false; } return true; } template
inline bool check_dist(const char* function, const RealType& N, const RealType& p, RealType* result, const Policy& pol) { return check_success_fraction( function, p, result, pol) && check_N( function, N, result, pol); } template
inline bool check_dist_and_k(const char* function, const RealType& N, const RealType& p, RealType k, RealType* result, const Policy& pol) { if(check_dist(function, N, p, result, pol) == false) return false; if((k < 0) || !(boost::math::isfinite)(k)) { *result = policies::raise_domain_error
( function, "Number of Successes argument is %1%, but must be >= 0 !", k, pol); return false; } if(k > N) { *result = policies::raise_domain_error
( function, "Number of Successes argument is %1%, but must be <= Number of Trials !", k, pol); return false; } return true; } template
inline bool check_dist_and_prob(const char* function, const RealType& N, RealType p, RealType prob, RealType* result, const Policy& pol) { if(check_dist(function, N, p, result, pol) && detail::check_probability(function, prob, result, pol) == false) return false; return true; } template
T inverse_binomial_cornish_fisher(T n, T sf, T p, T q, const Policy& pol) { BOOST_MATH_STD_USING // mean: T m = n * sf; // standard deviation: T sigma = sqrt(n * sf * (1 - sf)); // skewness T sk = (1 - 2 * sf) / sigma; // kurtosis: // T k = (1 - 6 * sf * (1 - sf) ) / (n * sf * (1 - sf)); // Get the inverse of a std normal distribution: T x = boost::math::erfc_inv(p > q ? 2 * q : 2 * p, pol) * constants::root_two
(); // Set the sign: if(p < 0.5) x = -x; T x2 = x * x; // w is correction term due to skewness T w = x + sk * (x2 - 1) / 6; /* // Add on correction due to kurtosis. // Disabled for now, seems to make things worse? // if(n >= 10) w += k * x * (x2 - 3) / 24 + sk * sk * x * (2 * x2 - 5) / -36; */ w = m + sigma * w; if(w < tools::min_value
()) return sqrt(tools::min_value
()); if(w > n) return n; return w; } template
RealType quantile_imp(const binomial_distribution
& dist, const RealType& p, const RealType& q) { // Quantile or Percent Point Binomial function. // Return the number of expected successes k, // for a given probability p. // // Error checks: BOOST_MATH_STD_USING // ADL of std names RealType result; RealType trials = dist.trials(); RealType success_fraction = dist.success_fraction(); if(false == binomial_detail::check_dist_and_prob( "boost::math::quantile(binomial_distribution<%1%> const&, %1%)", trials, success_fraction, p, &result, Policy())) { return result; } // Special cases: // if(p == 0) { // There may actually be no answer to this question, // since the probability of zero successes may be non-zero, // but zero is the best we can do: return 0; } if(p == 1) { // Probability of n or fewer successes is always one, // so n is the most sensible answer here: return trials; } if (p <= pow(1 - success_fraction, trials)) { // p <= pdf(dist, 0) == cdf(dist, 0) return 0; // So the only reasonable result is zero. } // And root finder would fail otherwise. // Solve for quantile numerically: // RealType guess = binomial_detail::inverse_binomial_cornish_fisher(trials, success_fraction, p, q, Policy()); RealType factor = 8; if(trials > 100) factor = 1.01f; // guess is pretty accurate else if((trials > 10) && (trials - 1 > guess) && (guess > 3)) factor = 1.15f; // less accurate but OK. else if(trials < 10) { // pretty inaccurate guess in this area: if(guess > trials / 64) { guess = trials / 4; factor = 2; } else guess = trials / 1024; } else factor = 2; // trials largish, but in far tails. typedef typename Policy::discrete_quantile_type discrete_quantile_type; boost::uintmax_t max_iter = policies::get_max_root_iterations
(); return detail::inverse_discrete_quantile( dist, p, q, guess, factor, RealType(1), discrete_quantile_type(), max_iter); } // quantile } template
> class binomial_distribution { public: typedef RealType value_type; typedef Policy policy_type; binomial_distribution(RealType n = 1, RealType p = 0.5) : m_n(n), m_p(p) { // Default n = 1 is the Bernoulli distribution // with equal probability of 'heads' or 'tails. RealType r; binomial_detail::check_dist( "boost::math::binomial_distribution<%1%>::binomial_distribution", m_n, m_p, &r, Policy()); } // binomial_distribution constructor. RealType success_fraction() const { // Probability. return m_p; } RealType trials() const { // Total number of trials. return m_n; } enum interval_type{ clopper_pearson_exact_interval, jeffreys_prior_interval }; // // Estimation of the success fraction parameter. // The best estimate is actually simply successes/trials, // these functions are used // to obtain confidence intervals for the success fraction. // static RealType find_lower_bound_on_p( RealType trials, RealType successes, RealType probability, interval_type t = clopper_pearson_exact_interval) { static const char* function = "boost::math::binomial_distribution<%1%>::find_lower_bound_on_p"; // Error checks: RealType result; if(false == binomial_detail::check_dist_and_k( function, trials, RealType(0), successes, &result, Policy()) && binomial_detail::check_dist_and_prob( function, trials, RealType(0), probability, &result, Policy())) { return result; } if(successes == 0) return 0; // NOTE!!! The Clopper Pearson formula uses "successes" not // "successes+1" as usual to get the lower bound, // see http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm return (t == clopper_pearson_exact_interval) ? ibeta_inv(successes, trials - successes + 1, probability, static_cast
(0), Policy()) : ibeta_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast
(0), Policy()); } static RealType find_upper_bound_on_p( RealType trials, RealType successes, RealType probability, interval_type t = clopper_pearson_exact_interval) { static const char* function = "boost::math::binomial_distribution<%1%>::find_upper_bound_on_p"; // Error checks: RealType result; if(false == binomial_detail::check_dist_and_k( function, trials, RealType(0), successes, &result, Policy()) && binomial_detail::check_dist_and_prob( function, trials, RealType(0), probability, &result, Policy())) { return result; } if(trials == successes) return 1; return (t == clopper_pearson_exact_interval) ? ibetac_inv(successes + 1, trials - successes, probability, static_cast
(0), Policy()) : ibetac_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast
(0), Policy()); } // Estimate number of trials parameter: // // "How many trials do I need to be P% sure of seeing k events?" // or // "How many trials can I have to be P% sure of seeing fewer than k events?" // static RealType find_minimum_number_of_trials( RealType k, // number of events RealType p, // success fraction RealType alpha) // risk level { static const char* function = "boost::math::binomial_distribution<%1%>::find_minimum_number_of_trials"; // Error checks: RealType result; if(false == binomial_detail::check_dist_and_k( function, k, p, k, &result, Policy()) && binomial_detail::check_dist_and_prob( function, k, p, alpha, &result, Policy())) { return result; } result = ibetac_invb(k + 1, p, alpha, Policy()); // returns n - k return result + k; } static RealType find_maximum_number_of_trials( RealType k, // number of events RealType p, // success fraction RealType alpha) // risk level { static const char* function = "boost::math::binomial_distribution<%1%>::find_maximum_number_of_trials"; // Error checks: RealType result; if(false == binomial_detail::check_dist_and_k( function, k, p, k, &result, Policy()) && binomial_detail::check_dist_and_prob( function, k, p, alpha, &result, Policy())) { return result; } result = ibeta_invb(k + 1, p, alpha, Policy()); // returns n - k return result + k; } private: RealType m_n; // Not sure if this shouldn't be an int? RealType m_p; // success_fraction }; // template
class binomial_distribution typedef binomial_distribution<> binomial; // typedef binomial_distribution
binomial; // IS now included since no longer a name clash with function binomial. //typedef binomial_distribution
binomial; // Reserved name of type double. template
const std::pair
range(const binomial_distribution
& dist) { // Range of permissible values for random variable k. using boost::math::tools::max_value; return std::pair
(static_cast
(0), dist.trials()); } template
const std::pair
support(const binomial_distribution
& dist) { // Range of supported values for random variable k. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. return std::pair
(0, dist.trials()); } template
inline RealType mean(const binomial_distribution
& dist) { // Mean of Binomial distribution = np. return dist.trials() * dist.success_fraction(); } // mean template
inline RealType variance(const binomial_distribution
& dist) { // Variance of Binomial distribution = np(1-p). return dist.trials() * dist.success_fraction() * (1 - dist.success_fraction()); } // variance template
RealType pdf(const binomial_distribution
& dist, const RealType& k) { // Probability Density/Mass Function. BOOST_FPU_EXCEPTION_GUARD BOOST_MATH_STD_USING // for ADL of std functions RealType n = dist.trials(); // Error check: RealType result; if(false == binomial_detail::check_dist_and_k( "boost::math::pdf(binomial_distribution<%1%> const&, %1%)", n, dist.success_fraction(), k, &result, Policy())) { return result; } // Special cases of success_fraction, regardless of k successes and regardless of n trials. if (dist.success_fraction() == 0) { // probability of zero successes is 1: return static_cast
(k == 0 ? 1 : 0); } if (dist.success_fraction() == 1) { // probability of n successes is 1: return static_cast
(k == n ? 1 : 0); } // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. if (n == 0) { return 1; // Probability = 1 = certainty. } if (k == 0) { // binomial coeffic (n 0) = 1, // n ^ 0 = 1 return pow(1 - dist.success_fraction(), n); } if (k == n) { // binomial coeffic (n n) = 1, // n ^ 0 = 1 return pow(dist.success_fraction(), k); // * pow((1 - dist.success_fraction()), (n - k)) = 1 } // Probability of getting exactly k successes // if C(n, k) is the binomial coefficient then: // // f(k; n,p) = C(n, k) * p^k * (1-p)^(n-k) // = (n!/(k!(n-k)!)) * p^k * (1-p)^(n-k) // = (tgamma(n+1) / (tgamma(k+1)*tgamma(n-k+1))) * p^k * (1-p)^(n-k) // = p^k (1-p)^(n-k) / (beta(k+1, n-k+1) * (n+1)) // = ibeta_derivative(k+1, n-k+1, p) / (n+1) // using boost::math::ibeta_derivative; // a, b, x return ibeta_derivative(k+1, n-k+1, dist.success_fraction(), Policy()) / (n+1); } // pdf template
inline RealType cdf(const binomial_distribution
& dist, const RealType& k) { // Cumulative Distribution Function Binomial. // The random variate k is the number of successes in n trials. // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. // Returns the sum of the terms 0 through k of the Binomial Probability Density/Mass: // // i=k // -- ( n ) i n-i // > | | p (1-p) // -- ( i ) // i=0 // The terms are not summed directly instead // the incomplete beta integral is employed, // according to the formula: // P = I[1-p]( n-k, k+1). // = 1 - I[p](k + 1, n - k) BOOST_MATH_STD_USING // for ADL of std functions RealType n = dist.trials(); RealType p = dist.success_fraction(); // Error check: RealType result; if(false == binomial_detail::check_dist_and_k( "boost::math::cdf(binomial_distribution<%1%> const&, %1%)", n, p, k, &result, Policy())) { return result; } if (k == n) { return 1; } // Special cases, regardless of k. if (p == 0) { // This need explanation: // the pdf is zero for all cases except when k == 0. // For zero p the probability of zero successes is one. // Therefore the cdf is always 1: // the probability of k or *fewer* successes is always 1 // if there are never any successes! return 1; } if (p == 1) { // This is correct but needs explanation: // when k = 1 // all the cdf and pdf values are zero *except* when k == n, // and that case has been handled above already. return 0; } // // P = I[1-p](n - k, k + 1) // = 1 - I[p](k + 1, n - k) // Use of ibetac here prevents cancellation errors in calculating // 1-p if p is very small, perhaps smaller than machine epsilon. // // Note that we do not use a finite sum here, since the incomplete // beta uses a finite sum internally for integer arguments, so // we'll just let it take care of the necessary logic. // return ibetac(k + 1, n - k, p, Policy()); } // binomial cdf template
inline RealType cdf(const complemented2_type
, RealType>& c) { // Complemented Cumulative Distribution Function Binomial. // The random variate k is the number of successes in n trials. // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. // Returns the sum of the terms k+1 through n of the Binomial Probability Density/Mass: // // i=n // -- ( n ) i n-i // > | | p (1-p) // -- ( i ) // i=k+1 // The terms are not summed directly instead // the incomplete beta integral is employed, // according to the formula: // Q = 1 -I[1-p]( n-k, k+1). // = I[p](k + 1, n - k) BOOST_MATH_STD_USING // for ADL of std functions RealType const& k = c.param; binomial_distribution
const& dist = c.dist; RealType n = dist.trials(); RealType p = dist.success_fraction(); // Error checks: RealType result; if(false == binomial_detail::check_dist_and_k( "boost::math::cdf(binomial_distribution<%1%> const&, %1%)", n, p, k, &result, Policy())) { return result; } if (k == n) { // Probability of greater than n successes is necessarily zero: return 0; } // Special cases, regardless of k. if (p == 0) { // This need explanation: the pdf is zero for all // cases except when k == 0. For zero p the probability // of zero successes is one. Therefore the cdf is always // 1: the probability of *more than* k successes is always 0 // if there are never any successes! return 0; } if (p == 1) { // This needs explanation, when p = 1 // we always have n successes, so the probability // of more than k successes is 1 as long as k < n. // The k == n case has already been handled above. return 1; } // // Calculate cdf binomial using the incomplete beta function. // Q = 1 -I[1-p](n - k, k + 1) // = I[p](k + 1, n - k) // Use of ibeta here prevents cancellation errors in calculating // 1-p if p is very small, perhaps smaller than machine epsilon. // // Note that we do not use a finite sum here, since the incomplete // beta uses a finite sum internally for integer arguments, so // we'll just let it take care of the necessary logic. // return ibeta(k + 1, n - k, p, Policy()); } // binomial cdf template
inline RealType quantile(const binomial_distribution
& dist, const RealType& p) { return binomial_detail::quantile_imp(dist, p, 1-p); } // quantile template
RealType quantile(const complemented2_type
, RealType>& c) { return binomial_detail::quantile_imp(c.dist, 1-c.param, c.param); } // quantile template
inline RealType mode(const binomial_distribution
& dist) { BOOST_MATH_STD_USING // ADL of std functions. RealType p = dist.success_fraction(); RealType n = dist.trials(); return floor(p * (n + 1)); } template
inline RealType median(const binomial_distribution
& dist) { // Bounds for the median of the negative binomial distribution // VAN DE VEN R. ; WEBER N. C. ; // Univ. Sydney, school mathematics statistics, Sydney N.S.W. 2006, AUSTRALIE // Metrika (Metrika) ISSN 0026-1335 CODEN MTRKA8 // 1993, vol. 40, no3-4, pp. 185-189 (4 ref.) // Bounds for median and 50 percetage point of binomial and negative binomial distribution // Metrika, ISSN 0026-1335 (Print) 1435-926X (Online) // Volume 41, Number 1 / December, 1994, DOI 10.1007/BF01895303 BOOST_MATH_STD_USING // ADL of std functions. RealType p = dist.success_fraction(); RealType n = dist.trials(); // Wikipedia says one of floor(np) -1, floor (np), floor(np) +1 return floor(p * n); // Chose the middle value. } template
inline RealType skewness(const binomial_distribution
& dist) { BOOST_MATH_STD_USING // ADL of std functions. RealType p = dist.success_fraction(); RealType n = dist.trials(); return (1 - 2 * p) / sqrt(n * p * (1 - p)); } template
inline RealType kurtosis(const binomial_distribution
& dist) { RealType p = dist.success_fraction(); RealType n = dist.trials(); return 3 - 6 / n + 1 / (n * p * (1 - p)); } template
inline RealType kurtosis_excess(const binomial_distribution
& dist) { RealType p = dist.success_fraction(); RealType q = 1 - p; RealType n = dist.trials(); return (1 - 6 * p * q) / (n * p * q); } } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include
#endif // BOOST_MATH_SPECIAL_BINOMIAL_HPP
binomial.hpp
Page URL
File URL
Prev
3/23
Next
Download
( 28 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.