DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btContactConstraint.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "LinearMath/btVector3.h" #include "btJacobianEntry.h" #include "btContactSolverInfo.h" #include "LinearMath/btMinMax.h" #include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h" #define ASSERT2 assert #define USE_INTERNAL_APPLY_IMPULSE 1 //bilateral constraint between two dynamic objects void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1, btRigidBody& body2, const btVector3& pos2, btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep) { (void)timeStep; (void)distance; btScalar normalLenSqr = normal.length2(); ASSERT2(btFabs(normalLenSqr) < btScalar(1.1)); if (normalLenSqr > btScalar(1.1)) { impulse = btScalar(0.); return; } btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); //this jacobian entry could be re-used for all iterations btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(), body2.getCenterOfMassTransform().getBasis().transpose(), rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(), body2.getInvInertiaDiagLocal(),body2.getInvMass()); btScalar jacDiagAB = jac.getDiagonal(); btScalar jacDiagABInv = btScalar(1.) / jacDiagAB; btScalar rel_vel = jac.getRelativeVelocity( body1.getLinearVelocity(), body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(), body2.getLinearVelocity(), body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity()); btScalar a; a=jacDiagABInv; rel_vel = normal.dot(vel); //todo: move this into proper structure btScalar contactDamping = btScalar(0.2); #ifdef ONLY_USE_LINEAR_MASS btScalar massTerm = btScalar(1.) / (body1.getInvMass() + body2.getInvMass()); impulse = - contactDamping * rel_vel * massTerm; #else btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv; impulse = velocityImpulse; #endif } //response between two dynamic objects with friction btScalar resolveSingleCollision( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { const btVector3& pos1_ = contactPoint.getPositionWorldOnA(); const btVector3& pos2_ = contactPoint.getPositionWorldOnB(); const btVector3& normal = contactPoint.m_normalWorldOnB; //constant over all iterations btVector3 rel_pos1 = pos1_ - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2_ - body2.getCenterOfMassPosition(); btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar rel_vel; rel_vel = normal.dot(vel); btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; // btScalar damping = solverInfo.m_damping ; btScalar Kerp = solverInfo.m_erp; btScalar Kcor = Kerp *Kfps; btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; assert(cpd); btScalar distance = cpd->m_penetration; btScalar positionalError = Kcor *-distance; btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv; btScalar normalImpulse = penetrationImpulse+velocityImpulse; // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse btScalar oldNormalImpulse = cpd->m_appliedImpulse; btScalar sum = oldNormalImpulse + normalImpulse; cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; #ifdef USE_INTERNAL_APPLY_IMPULSE if (body1.getInvMass()) { body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); } if (body2.getInvMass()) { body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); } #else //USE_INTERNAL_APPLY_IMPULSE body1.applyImpulse(normal*(normalImpulse), rel_pos1); body2.applyImpulse(-normal*(normalImpulse), rel_pos2); #endif //USE_INTERNAL_APPLY_IMPULSE return normalImpulse; } btScalar resolveSingleFriction( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { (void)solverInfo; const btVector3& pos1 = contactPoint.getPositionWorldOnA(); const btVector3& pos2 = contactPoint.getPositionWorldOnB(); btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; assert(cpd); btScalar combinedFriction = cpd->m_friction; btScalar limit = cpd->m_appliedImpulse * combinedFriction; if (cpd->m_appliedImpulse>btScalar(0.)) //friction { //apply friction in the 2 tangential directions // 1st tangent btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar j1,j2; { btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); // calculate j that moves us to zero relative velocity j1 = -vrel * cpd->m_jacDiagABInvTangent0; btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse0; cpd->m_accumulatedTangentImpulse0 = oldTangentImpulse + j1; btSetMin(cpd->m_accumulatedTangentImpulse0, limit); btSetMax(cpd->m_accumulatedTangentImpulse0, -limit); j1 = cpd->m_accumulatedTangentImpulse0 - oldTangentImpulse; } { // 2nd tangent btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); // calculate j that moves us to zero relative velocity j2 = -vrel * cpd->m_jacDiagABInvTangent1; btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse1; cpd->m_accumulatedTangentImpulse1 = oldTangentImpulse + j2; btSetMin(cpd->m_accumulatedTangentImpulse1, limit); btSetMax(cpd->m_accumulatedTangentImpulse1, -limit); j2 = cpd->m_accumulatedTangentImpulse1 - oldTangentImpulse; } #ifdef USE_INTERNAL_APPLY_IMPULSE if (body1.getInvMass()) { body1.internalApplyImpulse(cpd->m_frictionWorldTangential0*body1.getInvMass(),cpd->m_frictionAngularComponent0A,j1); body1.internalApplyImpulse(cpd->m_frictionWorldTangential1*body1.getInvMass(),cpd->m_frictionAngularComponent1A,j2); } if (body2.getInvMass()) { body2.internalApplyImpulse(cpd->m_frictionWorldTangential0*body2.getInvMass(),cpd->m_frictionAngularComponent0B,-j1); body2.internalApplyImpulse(cpd->m_frictionWorldTangential1*body2.getInvMass(),cpd->m_frictionAngularComponent1B,-j2); } #else //USE_INTERNAL_APPLY_IMPULSE body1.applyImpulse((j1 * cpd->m_frictionWorldTangential0)+(j2 * cpd->m_frictionWorldTangential1), rel_pos1); body2.applyImpulse((j1 * -cpd->m_frictionWorldTangential0)+(j2 * -cpd->m_frictionWorldTangential1), rel_pos2); #endif //USE_INTERNAL_APPLY_IMPULSE } return cpd->m_appliedImpulse; } btScalar resolveSingleFrictionOriginal( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { (void)solverInfo; const btVector3& pos1 = contactPoint.getPositionWorldOnA(); const btVector3& pos2 = contactPoint.getPositionWorldOnB(); btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; assert(cpd); btScalar combinedFriction = cpd->m_friction; btScalar limit = cpd->m_appliedImpulse * combinedFriction; //if (contactPoint.m_appliedImpulse>btScalar(0.)) //friction { //apply friction in the 2 tangential directions { // 1st tangent btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); // calculate j that moves us to zero relative velocity btScalar j = -vrel * cpd->m_jacDiagABInvTangent0; btScalar total = cpd->m_accumulatedTangentImpulse0 + j; btSetMin(total, limit); btSetMax(total, -limit); j = total - cpd->m_accumulatedTangentImpulse0; cpd->m_accumulatedTangentImpulse0 = total; body1.applyImpulse(j * cpd->m_frictionWorldTangential0, rel_pos1); body2.applyImpulse(j * -cpd->m_frictionWorldTangential0, rel_pos2); } { // 2nd tangent btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); // calculate j that moves us to zero relative velocity btScalar j = -vrel * cpd->m_jacDiagABInvTangent1; btScalar total = cpd->m_accumulatedTangentImpulse1 + j; btSetMin(total, limit); btSetMax(total, -limit); j = total - cpd->m_accumulatedTangentImpulse1; cpd->m_accumulatedTangentImpulse1 = total; body1.applyImpulse(j * cpd->m_frictionWorldTangential1, rel_pos1); body2.applyImpulse(j * -cpd->m_frictionWorldTangential1, rel_pos2); } } return cpd->m_appliedImpulse; } //velocity + friction //response between two dynamic objects with friction btScalar resolveSingleCollisionCombined( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { const btVector3& pos1 = contactPoint.getPositionWorldOnA(); const btVector3& pos2 = contactPoint.getPositionWorldOnB(); const btVector3& normal = contactPoint.m_normalWorldOnB; btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar rel_vel; rel_vel = normal.dot(vel); btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; //btScalar damping = solverInfo.m_damping ; btScalar Kerp = solverInfo.m_erp; btScalar Kcor = Kerp *Kfps; btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; assert(cpd); btScalar distance = cpd->m_penetration; btScalar positionalError = Kcor *-distance; btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv; btScalar normalImpulse = penetrationImpulse+velocityImpulse; // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse btScalar oldNormalImpulse = cpd->m_appliedImpulse; btScalar sum = oldNormalImpulse + normalImpulse; cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; #ifdef USE_INTERNAL_APPLY_IMPULSE if (body1.getInvMass()) { body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); } if (body2.getInvMass()) { body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); } #else //USE_INTERNAL_APPLY_IMPULSE body1.applyImpulse(normal*(normalImpulse), rel_pos1); body2.applyImpulse(-normal*(normalImpulse), rel_pos2); #endif //USE_INTERNAL_APPLY_IMPULSE { //friction btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; rel_vel = normal.dot(vel); btVector3 lat_vel = vel - normal * rel_vel; btScalar lat_rel_vel = lat_vel.length(); btScalar combinedFriction = cpd->m_friction; if (cpd->m_appliedImpulse > 0) if (lat_rel_vel > SIMD_EPSILON) { lat_vel /= lat_rel_vel; btVector3 temp1 = body1.getInvInertiaTensorWorld() * rel_pos1.cross(lat_vel); btVector3 temp2 = body2.getInvInertiaTensorWorld() * rel_pos2.cross(lat_vel); btScalar friction_impulse = lat_rel_vel / (body1.getInvMass() + body2.getInvMass() + lat_vel.dot(temp1.cross(rel_pos1) + temp2.cross(rel_pos2))); btScalar normal_impulse = cpd->m_appliedImpulse * combinedFriction; btSetMin(friction_impulse, normal_impulse); btSetMax(friction_impulse, -normal_impulse); body1.applyImpulse(lat_vel * -friction_impulse, rel_pos1); body2.applyImpulse(lat_vel * friction_impulse, rel_pos2); } } return normalImpulse; } btScalar resolveSingleFrictionEmpty( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo) { (void)contactPoint; (void)body1; (void)body2; (void)solverInfo; return btScalar(0.); };
btContactConstraint.cpp
Page URL
File URL
Prev
4/21
Next
Download
( 14 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.