DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
/* Stan Melax Convex Hull Computation Copyright (c) 2003-2006 Stan Melax http://www.melax.com/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include
#include "btConvexHull.h" #include "LinearMath/btAlignedObjectArray.h" #include "LinearMath/btMinMax.h" #include "LinearMath/btVector3.h" template
void Swap(T &a,T &b) { T tmp = a; a=b; b=tmp; } //---------------------------------- class int3 { public: int x,y,z; int3(){}; int3(int _x,int _y, int _z){x=_x;y=_y;z=_z;} const int& operator[](int i) const {return (&x)[i];} int& operator[](int i) {return (&x)[i];} }; //------- Plane ---------- class Plane { public: btVector3 normal; btScalar dist; // distance below origin - the D from plane equasion Ax+By+Cz+D=0 Plane(const btVector3 &n,btScalar d):normal(n),dist(d){} Plane():normal(),dist(0){} }; inline Plane PlaneFlip(const Plane &plane){return Plane(-plane.normal,-plane.dist);} inline int operator==( const Plane &a, const Plane &b ) { return (a.normal==b.normal && a.dist==b.dist); } inline int coplanar( const Plane &a, const Plane &b ) { return (a==b || a==PlaneFlip(b)); } //--------- Utility Functions ------ btVector3 PlaneLineIntersection(const Plane &plane, const btVector3 &p0, const btVector3 &p1); btVector3 PlaneProject(const Plane &plane, const btVector3 &point); btVector3 ThreePlaneIntersection(const Plane &p0,const Plane &p1, const Plane &p2) { btVector3 N1 = p0.normal; btVector3 N2 = p1.normal; btVector3 N3 = p2.normal; btVector3 n2n3; n2n3 = N2.cross(N3); btVector3 n3n1; n3n1 = N3.cross(N1); btVector3 n1n2; n1n2 = N1.cross(N2); btScalar quotient = (N1.dot(n2n3)); btAssert(btFabs(quotient) > btScalar(0.000001)); quotient = btScalar(-1.) / quotient; n2n3 *= p0.dist; n3n1 *= p1.dist; n1n2 *= p2.dist; btVector3 potentialVertex = n2n3; potentialVertex += n3n1; potentialVertex += n1n2; potentialVertex *= quotient; btVector3 result(potentialVertex.getX(),potentialVertex.getY(),potentialVertex.getZ()); return result; } btScalar DistanceBetweenLines(const btVector3 &ustart, const btVector3 &udir, const btVector3 &vstart, const btVector3 &vdir, btVector3 *upoint=NULL, btVector3 *vpoint=NULL); btVector3 TriNormal(const btVector3 &v0, const btVector3 &v1, const btVector3 &v2); btVector3 NormalOf(const btVector3 *vert, const int n); btVector3 PlaneLineIntersection(const Plane &plane, const btVector3 &p0, const btVector3 &p1) { // returns the point where the line p0-p1 intersects the plane n&d static btVector3 dif; dif = p1-p0; btScalar dn= dot(plane.normal,dif); btScalar t = -(plane.dist+dot(plane.normal,p0) )/dn; return p0 + (dif*t); } btVector3 PlaneProject(const Plane &plane, const btVector3 &point) { return point - plane.normal * (dot(point,plane.normal)+plane.dist); } btVector3 TriNormal(const btVector3 &v0, const btVector3 &v1, const btVector3 &v2) { // return the normal of the triangle // inscribed by v0, v1, and v2 btVector3 cp=cross(v1-v0,v2-v1); btScalar m=cp.length(); if(m==0) return btVector3(1,0,0); return cp*(btScalar(1.0)/m); } btScalar DistanceBetweenLines(const btVector3 &ustart, const btVector3 &udir, const btVector3 &vstart, const btVector3 &vdir, btVector3 *upoint, btVector3 *vpoint) { static btVector3 cp; cp = cross(udir,vdir).normalized(); btScalar distu = -dot(cp,ustart); btScalar distv = -dot(cp,vstart); btScalar dist = (btScalar)fabs(distu-distv); if(upoint) { Plane plane; plane.normal = cross(vdir,cp).normalized(); plane.dist = -dot(plane.normal,vstart); *upoint = PlaneLineIntersection(plane,ustart,ustart+udir); } if(vpoint) { Plane plane; plane.normal = cross(udir,cp).normalized(); plane.dist = -dot(plane.normal,ustart); *vpoint = PlaneLineIntersection(plane,vstart,vstart+vdir); } return dist; } class PHullResult { public: PHullResult(void) { mVcount = 0; mIndexCount = 0; mFaceCount = 0; mVertices = 0; mIndices = 0; } unsigned int mVcount; unsigned int mIndexCount; unsigned int mFaceCount; btVector3* mVertices; unsigned int *mIndices; }; #define REAL3 btVector3 #define REAL btScalar #define COPLANAR (0) #define UNDER (1) #define OVER (2) #define SPLIT (OVER|UNDER) #define PAPERWIDTH (btScalar(0.001)) btScalar planetestepsilon = PAPERWIDTH; class ConvexH { public: class HalfEdge { public: short ea; // the other half of the edge (index into edges list) unsigned char v; // the vertex at the start of this edge (index into vertices list) unsigned char p; // the facet on which this edge lies (index into facets list) HalfEdge(){} HalfEdge(short _ea,unsigned char _v, unsigned char _p):ea(_ea),v(_v),p(_p){} }; ConvexH() { int i; i=0; } ~ConvexH() { int i; i=0; } btAlignedObjectArray
vertices; btAlignedObjectArray
edges; btAlignedObjectArray
facets; ConvexH(int vertices_size,int edges_size,int facets_size); }; typedef ConvexH::HalfEdge HalfEdge; ConvexH::ConvexH(int vertices_size,int edges_size,int facets_size) { vertices.resize(vertices_size); edges.resize(edges_size); facets.resize(facets_size); } ConvexH *ConvexHDup(ConvexH *src) { ConvexH *dst = new ConvexH(src->vertices.size(),src->edges.size(),src->facets.size()); int i; for (i=0;i
vertices.size();i++) { dst->vertices[i] = src->vertices[i]; } for (i=0;i
edges.size();i++) { dst->edges[i] = src->edges[i]; } for (i=0;i
facets.size();i++) { dst->facets[i] = src->facets[i]; } return dst; } int PlaneTest(const Plane &p, const REAL3 &v) { REAL a = dot(v,p.normal)+p.dist; int flag = (a>planetestepsilon)?OVER:((a<-planetestepsilon)?UNDER:COPLANAR); return flag; } int SplitTest(ConvexH &convex,const Plane &plane) { int flag=0; for(int i=0;i
= convex.edges.size() || convex.edges[inext].p != convex.edges[i].p) { inext = estart; } assert(convex.edges[inext].p == convex.edges[i].p); int nb = convex.edges[i].ea; assert(nb!=255); if(nb==255 || nb==-1) return 0; assert(nb!=-1); assert(i== convex.edges[nb].ea); } for(i=0;i
= convex.edges.size() || convex.edges[i1].p != convex.edges[i].p) { i1 = estart; } int i2 = i1+1; if(i2>= convex.edges.size() || convex.edges[i2].p != convex.edges[i].p) { i2 = estart; } if(i==i2) continue; // i sliced tangent to an edge and created 2 meaningless edges REAL3 localnormal = TriNormal(convex.vertices[convex.edges[i ].v], convex.vertices[convex.edges[i1].v], convex.vertices[convex.edges[i2].v]); assert(dot(localnormal,convex.facets[convex.edges[i].p].normal)>0); if(dot(localnormal,convex.facets[convex.edges[i].p].normal)<=0)return 0; } return 1; } // back to back quads ConvexH *test_btbq() { ConvexH *convex = new ConvexH(4,8,2); convex->vertices[0] = REAL3(0,0,0); convex->vertices[1] = REAL3(1,0,0); convex->vertices[2] = REAL3(1,1,0); convex->vertices[3] = REAL3(0,1,0); convex->facets[0] = Plane(REAL3(0,0,1),0); convex->facets[1] = Plane(REAL3(0,0,-1),0); convex->edges[0] = HalfEdge(7,0,0); convex->edges[1] = HalfEdge(6,1,0); convex->edges[2] = HalfEdge(5,2,0); convex->edges[3] = HalfEdge(4,3,0); convex->edges[4] = HalfEdge(3,0,1); convex->edges[5] = HalfEdge(2,3,1); convex->edges[6] = HalfEdge(1,2,1); convex->edges[7] = HalfEdge(0,1,1); AssertIntact(*convex); return convex; } ConvexH *test_cube() { ConvexH *convex = new ConvexH(8,24,6); convex->vertices[0] = REAL3(0,0,0); convex->vertices[1] = REAL3(0,0,1); convex->vertices[2] = REAL3(0,1,0); convex->vertices[3] = REAL3(0,1,1); convex->vertices[4] = REAL3(1,0,0); convex->vertices[5] = REAL3(1,0,1); convex->vertices[6] = REAL3(1,1,0); convex->vertices[7] = REAL3(1,1,1); convex->facets[0] = Plane(REAL3(-1,0,0),0); convex->facets[1] = Plane(REAL3(1,0,0),-1); convex->facets[2] = Plane(REAL3(0,-1,0),0); convex->facets[3] = Plane(REAL3(0,1,0),-1); convex->facets[4] = Plane(REAL3(0,0,-1),0); convex->facets[5] = Plane(REAL3(0,0,1),-1); convex->edges[0 ] = HalfEdge(11,0,0); convex->edges[1 ] = HalfEdge(23,1,0); convex->edges[2 ] = HalfEdge(15,3,0); convex->edges[3 ] = HalfEdge(16,2,0); convex->edges[4 ] = HalfEdge(13,6,1); convex->edges[5 ] = HalfEdge(21,7,1); convex->edges[6 ] = HalfEdge( 9,5,1); convex->edges[7 ] = HalfEdge(18,4,1); convex->edges[8 ] = HalfEdge(19,0,2); convex->edges[9 ] = HalfEdge( 6,4,2); convex->edges[10] = HalfEdge(20,5,2); convex->edges[11] = HalfEdge( 0,1,2); convex->edges[12] = HalfEdge(22,3,3); convex->edges[13] = HalfEdge( 4,7,3); convex->edges[14] = HalfEdge(17,6,3); convex->edges[15] = HalfEdge( 2,2,3); convex->edges[16] = HalfEdge( 3,0,4); convex->edges[17] = HalfEdge(14,2,4); convex->edges[18] = HalfEdge( 7,6,4); convex->edges[19] = HalfEdge( 8,4,4); convex->edges[20] = HalfEdge(10,1,5); convex->edges[21] = HalfEdge( 5,5,5); convex->edges[22] = HalfEdge(12,7,5); convex->edges[23] = HalfEdge( 1,3,5); return convex; } ConvexH *ConvexHMakeCube(const REAL3 &bmin, const REAL3 &bmax) { ConvexH *convex = test_cube(); convex->vertices[0] = REAL3(bmin.getX(),bmin.getY(),bmin.getZ()); convex->vertices[1] = REAL3(bmin.getX(),bmin.getY(),bmax.getZ()); convex->vertices[2] = REAL3(bmin.getX(),bmax.getY(),bmin.getZ()); convex->vertices[3] = REAL3(bmin.getX(),bmax.getY(),bmax.getZ()); convex->vertices[4] = REAL3(bmax.getX(),bmin.getY(),bmin.getZ()); convex->vertices[5] = REAL3(bmax.getX(),bmin.getY(),bmax.getZ()); convex->vertices[6] = REAL3(bmax.getX(),bmax.getY(),bmin.getZ()); convex->vertices[7] = REAL3(bmax.getX(),bmax.getY(),bmax.getZ()); convex->facets[0] = Plane(REAL3(-1,0,0), bmin.getX()); convex->facets[1] = Plane(REAL3(1,0,0), -bmax.getX()); convex->facets[2] = Plane(REAL3(0,-1,0), bmin.getY()); convex->facets[3] = Plane(REAL3(0,1,0), -bmax.getY()); convex->facets[4] = Plane(REAL3(0,0,-1), bmin.getZ()); convex->facets[5] = Plane(REAL3(0,0,1), -bmax.getZ()); return convex; } ConvexH *ConvexHCrop(ConvexH &convex,const Plane &slice) { int i; int vertcountunder=0; int vertcountover =0; btAlignedObjectArray
vertscoplanar; // existing vertex members of convex that are coplanar vertscoplanar.resize(0); btAlignedObjectArray
edgesplit; // existing edges that members of convex that cross the splitplane edgesplit.resize(0); assert(convex.edges.size()<480); EdgeFlag edgeflag[512]; VertFlag vertflag[256]; PlaneFlag planeflag[128]; HalfEdge tmpunderedges[512]; Plane tmpunderplanes[128]; Coplanar coplanaredges[512]; int coplanaredges_num=0; btAlignedObjectArray
createdverts; // do the side-of-plane tests for(i=0;i
= convex.edges.size() || convex.edges[e1].p!=currentplane) { enextface = e1; e1=estart; } HalfEdge &edge0 = convex.edges[e0]; HalfEdge &edge1 = convex.edges[e1]; HalfEdge &edgea = convex.edges[edge0.ea]; planeside |= vertflag[edge0.v].planetest; //if((vertflag[edge0.v].planetest & vertflag[edge1.v].planetest) == COPLANAR) { // assert(ecop==-1); // ecop=e; //} if(vertflag[edge0.v].planetest == OVER && vertflag[edge1.v].planetest == OVER){ // both endpoints over plane edgeflag[e0].undermap = -1; } else if((vertflag[edge0.v].planetest | vertflag[edge1.v].planetest) == UNDER) { // at least one endpoint under, the other coplanar or under edgeflag[e0].undermap = under_edge_count; tmpunderedges[under_edge_count].v = vertflag[edge0.v].undermap; tmpunderedges[under_edge_count].p = underplanescount; if(edge0.ea < e0) { // connect the neighbors assert(edgeflag[edge0.ea].undermap !=-1); tmpunderedges[under_edge_count].ea = edgeflag[edge0.ea].undermap; tmpunderedges[edgeflag[edge0.ea].undermap].ea = under_edge_count; } under_edge_count++; } else if((vertflag[edge0.v].planetest | vertflag[edge1.v].planetest) == COPLANAR) { // both endpoints coplanar // must check a 3rd point to see if UNDER int e2 = e1+1; if(e2>=convex.edges.size() || convex.edges[e2].p!=currentplane) { e2 = estart; } assert(convex.edges[e2].p==currentplane); HalfEdge &edge2 = convex.edges[e2]; if(vertflag[edge2.v].planetest==UNDER) { edgeflag[e0].undermap = under_edge_count; tmpunderedges[under_edge_count].v = vertflag[edge0.v].undermap; tmpunderedges[under_edge_count].p = underplanescount; tmpunderedges[under_edge_count].ea = -1; // make sure this edge is added to the "coplanar" list coplanaredge = under_edge_count; vout = vertflag[edge0.v].undermap; vin = vertflag[edge1.v].undermap; under_edge_count++; } else { edgeflag[e0].undermap = -1; } } else if(vertflag[edge0.v].planetest == UNDER && vertflag[edge1.v].planetest == OVER) { // first is under 2nd is over edgeflag[e0].undermap = under_edge_count; tmpunderedges[under_edge_count].v = vertflag[edge0.v].undermap; tmpunderedges[under_edge_count].p = underplanescount; if(edge0.ea < e0) { assert(edgeflag[edge0.ea].undermap !=-1); // connect the neighbors tmpunderedges[under_edge_count].ea = edgeflag[edge0.ea].undermap; tmpunderedges[edgeflag[edge0.ea].undermap].ea = under_edge_count; vout = tmpunderedges[edgeflag[edge0.ea].undermap].v; } else { Plane &p0 = convex.facets[edge0.p]; Plane &pa = convex.facets[edgea.p]; createdverts.push_back(ThreePlaneIntersection(p0,pa,slice)); //createdverts.push_back(PlaneProject(slice,PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v]))); //createdverts.push_back(PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v])); vout = vertcountunder++; } under_edge_count++; /// hmmm something to think about: i might be able to output this edge regarless of // wheter or not we know v-in yet. ok i;ll try this now: tmpunderedges[under_edge_count].v = vout; tmpunderedges[under_edge_count].p = underplanescount; tmpunderedges[under_edge_count].ea = -1; coplanaredge = under_edge_count; under_edge_count++; if(vin!=-1) { // we previously processed an edge where we came under // now we know about vout as well // ADD THIS EDGE TO THE LIST OF EDGES THAT NEED NEIGHBOR ON PARTITION PLANE!! } } else if(vertflag[edge0.v].planetest == COPLANAR && vertflag[edge1.v].planetest == OVER) { // first is coplanar 2nd is over edgeflag[e0].undermap = -1; vout = vertflag[edge0.v].undermap; // I hate this but i have to make sure part of this face is UNDER before ouputting this vert int k=estart; assert(edge0.p == currentplane); while(!(planeside&UNDER) && k
= vertcountunderold); // for debugging only } if(vout!=-1) { // we previously processed an edge where we went over // now we know vin too // ADD THIS EDGE TO THE LIST OF EDGES THAT NEED NEIGHBOR ON PARTITION PLANE!! } // output edge tmpunderedges[under_edge_count].v = vin; tmpunderedges[under_edge_count].p = underplanescount; edgeflag[e0].undermap = under_edge_count; if(e0>edge0.ea) { assert(edgeflag[edge0.ea].undermap !=-1); // connect the neighbors tmpunderedges[under_edge_count].ea = edgeflag[edge0.ea].undermap; tmpunderedges[edgeflag[edge0.ea].undermap].ea = under_edge_count; } assert(edgeflag[e0].undermap == under_edge_count); under_edge_count++; } else if(vertflag[edge0.v].planetest == OVER && vertflag[edge1.v].planetest == COPLANAR) { // first is over next is coplanar edgeflag[e0].undermap = -1; vin = vertflag[edge1.v].undermap; assert(vin!=-1); if(vout!=-1) { // we previously processed an edge where we came under // now we know both endpoints // ADD THIS EDGE TO THE LIST OF EDGES THAT NEED NEIGHBOR ON PARTITION PLANE!! } } else { assert(0); } e0=e1; e1++; // do the modulo at the beginning of the loop } while(e0!=estart) ; e0 = enextface; if(planeside&UNDER) { planeflag[currentplane].undermap = underplanescount; tmpunderplanes[underplanescount] = convex.facets[currentplane]; underplanescount++; } else { planeflag[currentplane].undermap = 0; } if(vout>=0 && (planeside&UNDER)) { assert(vin>=0); assert(coplanaredge>=0); assert(coplanaredge!=511); coplanaredges[coplanaredges_num].ea = coplanaredge; coplanaredges[coplanaredges_num].v0 = vin; coplanaredges[coplanaredges_num].v1 = vout; coplanaredges_num++; } } // add the new plane to the mix: if(coplanaredges_num>0) { tmpunderplanes[underplanescount++]=slice; } for(i=0;i
=coplanaredges_num) { assert(j
vertices.size();j++) { d = btMax(d,dot(convex->vertices[j],planes[i].normal)+planes[i].dist); } if(i==0 || d>md) { p=i; md=d; } } return (md>epsilon)?p:-1; } template
inline int maxdir(const T *p,int count,const T &dir) { assert(count); int m=0; for(int i=1;i
dot(p[m],dir)) m=i; } return m; } template
int maxdirfiltered(const T *p,int count,const T &dir,btAlignedObjectArray
&allow) { assert(count); int m=-1; for(int i=0;i
dot(p[m],dir)) m=i; } assert(m!=-1); return m; } btVector3 orth(const btVector3 &v) { btVector3 a=cross(v,btVector3(0,0,1)); btVector3 b=cross(v,btVector3(0,1,0)); if (a.length() > b.length()) { return a.normalized(); } else { return b.normalized(); } } template
int maxdirsterid(const T *p,int count,const T &dir,btAlignedObjectArray
&allow) { int m=-1; while(m==-1) { m = maxdirfiltered(p,count,dir,allow); if(allow[m]==3) return m; T u = orth(dir); T v = cross(u,dir); int ma=-1; for(btScalar x = btScalar(0.0) ; x<= btScalar(360.0) ; x+= btScalar(45.0)) { btScalar s = sinf(SIMD_RADS_PER_DEG*(x)); btScalar c = cosf(SIMD_RADS_PER_DEG*(x)); int mb = maxdirfiltered(p,count,dir+(u*s+v*c)*btScalar(0.025),allow); if(ma==m && mb==m) { allow[m]=3; return m; } if(ma!=-1 && ma!=mb) // Yuck - this is really ugly { int mc = ma; for(btScalar xx = x-btScalar(40.0) ; xx <= x ; xx+= btScalar(5.0)) { btScalar s = sinf(SIMD_RADS_PER_DEG*(xx)); btScalar c = cosf(SIMD_RADS_PER_DEG*(xx)); int md = maxdirfiltered(p,count,dir+(u*s+v*c)*btScalar(0.025),allow); if(mc==m && md==m) { allow[m]=3; return m; } mc=md; } } ma=mb; } allow[m]=0; m=-1; } assert(0); return m; } int operator ==(const int3 &a,const int3 &b) { for(int i=0;i<3;i++) { if(a[i]!=b[i]) return 0; } return 1; } int3 roll3(int3 a) { int tmp=a[0]; a[0]=a[1]; a[1]=a[2]; a[2]=tmp; return a; } int isa(const int3 &a,const int3 &b) { return ( a==b || roll3(a)==b || a==roll3(b) ); } int b2b(const int3 &a,const int3 &b) { return isa(a,int3(b[2],b[1],b[0])); } int above(btVector3* vertices,const int3& t, const btVector3 &p, btScalar epsilon) { btVector3 n=TriNormal(vertices[t[0]],vertices[t[1]],vertices[t[2]]); return (dot(n,p-vertices[t[0]]) > epsilon); // EPSILON??? } int hasedge(const int3 &t, int a,int b) { for(int i=0;i<3;i++) { int i1= (i+1)%3; if(t[i]==a && t[i1]==b) return 1; } return 0; } int hasvert(const int3 &t, int v) { return (t[0]==v || t[1]==v || t[2]==v) ; } int shareedge(const int3 &a,const int3 &b) { int i; for(i=0;i<3;i++) { int i1= (i+1)%3; if(hasedge(a,b[i1],b[i])) return 1; } return 0; } class Tri; btAlignedObjectArray
tris; class Tri : public int3 { public: int3 n; int id; int vmax; btScalar rise; Tri(int a,int b,int c):int3(a,b,c),n(-1,-1,-1) { id = tris.size(); tris.push_back(this); vmax=-1; rise = btScalar(0.0); } ~Tri() { assert(tris[id]==this); tris[id]=NULL; } int &neib(int a,int b); }; int &Tri::neib(int a,int b) { static int er=-1; int i; for(i=0;i<3;i++) { int i1=(i+1)%3; int i2=(i+2)%3; if((*this)[i]==a && (*this)[i1]==b) return n[i2]; if((*this)[i]==b && (*this)[i1]==a) return n[i2]; } assert(0); return er; } void b2bfix(Tri* s,Tri*t) { int i; for(i=0;i<3;i++) { int i1=(i+1)%3; int i2=(i+2)%3; int a = (*s)[i1]; int b = (*s)[i2]; assert(tris[s->neib(a,b)]->neib(b,a) == s->id); assert(tris[t->neib(a,b)]->neib(b,a) == t->id); tris[s->neib(a,b)]->neib(b,a) = t->neib(b,a); tris[t->neib(b,a)]->neib(a,b) = s->neib(a,b); } } void removeb2b(Tri* s,Tri*t) { b2bfix(s,t); delete s; delete t; } void checkit(Tri *t) { int i; assert(tris[t->id]==t); for(i=0;i<3;i++) { int i1=(i+1)%3; int i2=(i+2)%3; int a = (*t)[i1]; int b = (*t)[i2]; assert(a!=b); assert( tris[t->n[i]]->neib(b,a) == t->id); } } void extrude(Tri *t0,int v) { int3 t= *t0; int n = tris.size(); Tri* ta = new Tri(v,t[1],t[2]); ta->n = int3(t0->n[0],n+1,n+2); tris[t0->n[0]]->neib(t[1],t[2]) = n+0; Tri* tb = new Tri(v,t[2],t[0]); tb->n = int3(t0->n[1],n+2,n+0); tris[t0->n[1]]->neib(t[2],t[0]) = n+1; Tri* tc = new Tri(v,t[0],t[1]); tc->n = int3(t0->n[2],n+0,n+1); tris[t0->n[2]]->neib(t[0],t[1]) = n+2; checkit(ta); checkit(tb); checkit(tc); if(hasvert(*tris[ta->n[0]],v)) removeb2b(ta,tris[ta->n[0]]); if(hasvert(*tris[tb->n[0]],v)) removeb2b(tb,tris[tb->n[0]]); if(hasvert(*tris[tc->n[0]],v)) removeb2b(tc,tris[tc->n[0]]); delete t0; } Tri *extrudable(btScalar epsilon) { int i; Tri *t=NULL; for(i=0;i
rise
rise)) { t = tris[i]; } } return (t->rise >epsilon)?t:NULL ; } class int4 { public: int x,y,z,w; int4(){}; int4(int _x,int _y, int _z,int _w){x=_x;y=_y;z=_z;w=_w;} const int& operator[](int i) const {return (&x)[i];} int& operator[](int i) {return (&x)[i];} }; int4 FindSimplex(btVector3 *verts,int verts_count,btAlignedObjectArray
&allow) { btVector3 basis[3]; basis[0] = btVector3( btScalar(0.01), btScalar(0.02), btScalar(1.0) ); int p0 = maxdirsterid(verts,verts_count, basis[0],allow); int p1 = maxdirsterid(verts,verts_count,-basis[0],allow); basis[0] = verts[p0]-verts[p1]; if(p0==p1 || basis[0]==btVector3(0,0,0)) return int4(-1,-1,-1,-1); basis[1] = cross(btVector3( btScalar(1),btScalar(0.02), btScalar(0)),basis[0]); basis[2] = cross(btVector3(btScalar(-0.02), btScalar(1), btScalar(0)),basis[0]); if (basis[1].length() > basis[2].length()) { basis[1].normalize(); } else { basis[1] = basis[2]; basis[1].normalize (); } int p2 = maxdirsterid(verts,verts_count,basis[1],allow); if(p2 == p0 || p2 == p1) { p2 = maxdirsterid(verts,verts_count,-basis[1],allow); } if(p2 == p0 || p2 == p1) return int4(-1,-1,-1,-1); basis[1] = verts[p2] - verts[p0]; basis[2] = cross(basis[1],basis[0]).normalized(); int p3 = maxdirsterid(verts,verts_count,basis[2],allow); if(p3==p0||p3==p1||p3==p2) p3 = maxdirsterid(verts,verts_count,-basis[2],allow); if(p3==p0||p3==p1||p3==p2) return int4(-1,-1,-1,-1); assert(!(p0==p1||p0==p2||p0==p3||p1==p2||p1==p3||p2==p3)); if(dot(verts[p3]-verts[p0],cross(verts[p1]-verts[p0],verts[p2]-verts[p0])) <0) {Swap(p2,p3);} return int4(p0,p1,p2,p3); } int calchullgen(btVector3 *verts,int verts_count, int vlimit) { if(verts_count <4) return 0; if(vlimit==0) vlimit=1000000000; int j; btVector3 bmin(*verts),bmax(*verts); btAlignedObjectArray
isextreme; isextreme.reserve(verts_count); btAlignedObjectArray
allow; allow.reserve(verts_count); for(j=0;j
n=int3(2,3,1); Tri *t1 = new Tri(p[3],p[2],p[0]); t1->n=int3(3,2,0); Tri *t2 = new Tri(p[0],p[1],p[3]); t2->n=int3(0,1,3); Tri *t3 = new Tri(p[1],p[0],p[2]); t3->n=int3(1,0,2); isextreme[p[0]]=isextreme[p[1]]=isextreme[p[2]]=isextreme[p[3]]=1; checkit(t0);checkit(t1);checkit(t2);checkit(t3); for(j=0;j
vmax<0); btVector3 n=TriNormal(verts[(*t)[0]],verts[(*t)[1]],verts[(*t)[2]]); t->vmax = maxdirsterid(verts,verts_count,n,allow); t->rise = dot(n,verts[t->vmax]-verts[(*t)[0]]); } Tri *te; vlimit-=4; while(vlimit >0 && (te=extrudable(epsilon))) { int3 ti=*te; int v=te->vmax; assert(v != -1); assert(!isextreme[v]); // wtf we've already done this vertex isextreme[v]=1; //if(v==p0 || v==p1 || v==p2 || v==p3) continue; // done these already j=tris.size(); while(j--) { if(!tris[j]) continue; int3 t=*tris[j]; if(above(verts,t,verts[v],btScalar(0.01)*epsilon)) { extrude(tris[j],v); } } // now check for those degenerate cases where we have a flipped triangle or a really skinny triangle j=tris.size(); while(j--) { if(!tris[j]) continue; if(!hasvert(*tris[j],v)) break; int3 nt=*tris[j]; if(above(verts,nt,center,btScalar(0.01)*epsilon) || cross(verts[nt[1]]-verts[nt[0]],verts[nt[2]]-verts[nt[1]]).length()< epsilon*epsilon*btScalar(0.1) ) { Tri *nb = tris[tris[j]->n[0]]; assert(nb);assert(!hasvert(*nb,v));assert(nb->id
vmax>=0) break; btVector3 n=TriNormal(verts[(*t)[0]],verts[(*t)[1]],verts[(*t)[2]]); t->vmax = maxdirsterid(verts,verts_count,n,allow); if(isextreme[t->vmax]) { t->vmax=-1; // already done that vertex - algorithm needs to be able to terminate. } else { t->rise = dot(n,verts[t->vmax]-verts[(*t)[0]]); } } vlimit --; } return 1; } int calchull(btVector3 *verts,int verts_count, int *&tris_out, int &tris_count,int vlimit) { int rc=calchullgen(verts,verts_count, vlimit) ; if(!rc) return 0; btAlignedObjectArray
ts; int i; for(i=0;i
=0) { ConvexH *tmp = c; c = ConvexHCrop(*tmp,planes[k]); if(c==NULL) {c=tmp; break;} // might want to debug this case better!!! if(!AssertIntact(*c)) {c=tmp; break;} // might want to debug this case better too!!! delete tmp; } assert(AssertIntact(*c)); //return c; faces_out = (int*)new int[(1+c->facets.size()+c->edges.size())]; // new int[1+c->facets.size()+c->edges.size()]; faces_count_out=0; i=0; faces_out[faces_count_out++]=-1; k=0; while(i
edges.size()) { j=1; while(j+i
edges.size() && c->edges[i].p==c->edges[i+j].p) { j++; } faces_out[faces_count_out++]=j; while(j--) { faces_out[faces_count_out++] = c->edges[i].v; i++; } k++; } faces_out[0]=k; // number of faces. assert(k==c->facets.size()); assert(faces_count_out == 1+c->facets.size()+c->edges.size()); verts_out = new btVector3[c->vertices.size()]; verts_count_out = c->vertices.size(); for(i=0;i
vertices.size();i++) { verts_out[i] = btVector3(c->vertices[i]); } c->vertices.resize(0); delete c; return 1; } bool ComputeHull(unsigned int vcount,const btVector3 *vertices,PHullResult &result,unsigned int vlimit) { int *tris_out; int tris_count; int ret = calchull( (btVector3 *) vertices, (int) vcount, tris_out, tris_count, vlimit ); if(!ret) return false; result.mIndexCount = (unsigned int) (tris_count*3); result.mFaceCount = (unsigned int) tris_count; result.mVertices = (btVector3*) vertices; result.mVcount = (unsigned int) vcount; result.mIndices = (unsigned int *) tris_out; return true; } void ReleaseHull(PHullResult &result) { if ( result.mIndices ) { delete[]result.mIndices; } result.mVcount = 0; result.mIndexCount = 0; result.mIndices = 0; result.mVertices = 0; result.mIndices = 0; } //********************************************************************* //********************************************************************* //******** HullLib header //********************************************************************* //********************************************************************* //********************************************************************* //********************************************************************* //******** HullLib implementation //********************************************************************* //********************************************************************* HullError HullLibrary::CreateConvexHull(const HullDesc &desc, // describes the input request HullResult &result) // contains the resulst { HullError ret = QE_FAIL; PHullResult hr; unsigned int vcount = desc.mVcount; if ( vcount < 8 ) vcount = 8; btVector3* vsource = new btVector3[vcount]; btVector3 scale; unsigned int ovcount; bool ok = CleanupVertices(desc.mVcount,desc.mVertices, desc.mVertexStride, ovcount, vsource, desc.mNormalEpsilon, scale ); // normalize point cloud, remove duplicates! if ( ok ) { if ( 1 ) // scale vertices back to their original size. { for (unsigned int i=0; i
bmax[j] ) bmax[j] = p[j]; } } } btScalar dx = bmax[0] - bmin[0]; btScalar dy = bmax[1] - bmin[1]; btScalar dz = bmax[2] - bmin[2]; btVector3 center; center[0] = dx*btScalar(0.5) + bmin[0]; center[1] = dy*btScalar(0.5) + bmin[1]; center[2] = dz*btScalar(0.5) + bmin[2]; if ( dx < EPSILON || dy < EPSILON || dz < EPSILON || svcount < 3 ) { btScalar len = FLT_MAX; if ( dx > EPSILON && dx < len ) len = dx; if ( dy > EPSILON && dy < len ) len = dy; if ( dz > EPSILON && dz < len ) len = dz; if ( len == FLT_MAX ) { dx = dy = dz = btScalar(0.01); // one centimeter } else { if ( dx < EPSILON ) dx = len * btScalar(0.05); // 1/5th the shortest non-zero edge. if ( dy < EPSILON ) dy = len * btScalar(0.05); if ( dz < EPSILON ) dz = len * btScalar(0.05); } btScalar x1 = center[0] - dx; btScalar x2 = center[0] + dx; btScalar y1 = center[1] - dy; btScalar y2 = center[1] + dy; btScalar z1 = center[2] - dz; btScalar z2 = center[2] + dz; addPoint(vcount,vertices,x1,y1,z1); addPoint(vcount,vertices,x2,y1,z1); addPoint(vcount,vertices,x2,y2,z1); addPoint(vcount,vertices,x1,y2,z1); addPoint(vcount,vertices,x1,y1,z2); addPoint(vcount,vertices,x2,y1,z2); addPoint(vcount,vertices,x2,y2,z2); addPoint(vcount,vertices,x1,y2,z2); return true; // return cube } else { if ( scale ) { scale[0] = dx; scale[1] = dy; scale[2] = dz; recip[0] = 1 / dx; recip[1] = 1 / dy; recip[2] = 1 / dz; center[0]*=recip[0]; center[1]*=recip[1]; center[2]*=recip[2]; } } vtx = (const char *) svertices; for (unsigned int i=0; i
getX(); btScalar py = p->getY(); btScalar pz = p->getZ(); if ( scale ) { px = px*recip[0]; // normalize py = py*recip[1]; // normalize pz = pz*recip[2]; // normalize } if ( 1 ) { unsigned int j; for (j=0; j
dist2 ) { v[0] = px; v[1] = py; v[2] = pz; } break; } } if ( j == vcount ) { btVector3& dest = vertices[vcount]; dest[0] = px; dest[1] = py; dest[2] = pz; vcount++; } } } // ok..now make sure we didn't prune so many vertices it is now invalid. if ( 1 ) { btScalar bmin[3] = { FLT_MAX, FLT_MAX, FLT_MAX }; btScalar bmax[3] = { -FLT_MAX, -FLT_MAX, -FLT_MAX }; for (unsigned int i=0; i
bmax[j] ) bmax[j] = p[j]; } } btScalar dx = bmax[0] - bmin[0]; btScalar dy = bmax[1] - bmin[1]; btScalar dz = bmax[2] - bmin[2]; if ( dx < EPSILON || dy < EPSILON || dz < EPSILON || vcount < 3) { btScalar cx = dx*btScalar(0.5) + bmin[0]; btScalar cy = dy*btScalar(0.5) + bmin[1]; btScalar cz = dz*btScalar(0.5) + bmin[2]; btScalar len = FLT_MAX; if ( dx >= EPSILON && dx < len ) len = dx; if ( dy >= EPSILON && dy < len ) len = dy; if ( dz >= EPSILON && dz < len ) len = dz; if ( len == FLT_MAX ) { dx = dy = dz = btScalar(0.01); // one centimeter } else { if ( dx < EPSILON ) dx = len * btScalar(0.05); // 1/5th the shortest non-zero edge. if ( dy < EPSILON ) dy = len * btScalar(0.05); if ( dz < EPSILON ) dz = len * btScalar(0.05); } btScalar x1 = cx - dx; btScalar x2 = cx + dx; btScalar y1 = cy - dy; btScalar y2 = cy + dy; btScalar z1 = cz - dz; btScalar z2 = cz + dz; vcount = 0; // add box addPoint(vcount,vertices,x1,y1,z1); addPoint(vcount,vertices,x2,y1,z1); addPoint(vcount,vertices,x2,y2,z1); addPoint(vcount,vertices,x1,y2,z1); addPoint(vcount,vertices,x1,y1,z2); addPoint(vcount,vertices,x2,y1,z2); addPoint(vcount,vertices,x2,y2,z2); addPoint(vcount,vertices,x1,y2,z2); return true; } } return true; } void HullLibrary::BringOutYourDead(const btVector3* verts,unsigned int vcount, btVector3* overts,unsigned int &ocount,unsigned int *indices,unsigned indexcount) { unsigned int *used = new unsigned int[vcount]; memset(used,0,sizeof(unsigned int)*vcount); ocount = 0; for (unsigned int i=0; i
= 0 && v < vcount ); if ( used[v] ) // if already remapped { indices[i] = used[v]-1; // index to new array } else { indices[i] = ocount; // new index mapping overts[ocount][0] = verts[v][0]; // copy old vert to new vert array overts[ocount][1] = verts[v][1]; overts[ocount][2] = verts[v][2]; ocount++; // increment output vert count assert( ocount >=0 && ocount <= vcount ); used[v] = ocount; // assign new index remapping } } delete[] used; }
btConvexHull.cpp
Page URL
File URL
Prev 1/6
Next
Download
( 46 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.