DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// Copyright John Maddock 2007. // Copyright Paul A. Bristow 2007 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SF_DETAIL_INV_T_HPP #define BOOST_MATH_SF_DETAIL_INV_T_HPP #include
namespace boost{ namespace math{ namespace detail{ // // The main method used is due to Hill: // // G. W. Hill, Algorithm 396, Student�s t-Quantiles, // Communications of the ACM, 13(10): 619-620, Oct., 1970. // template
T inverse_students_t_hill(T ndf, T u, const Policy& pol) { BOOST_MATH_STD_USING BOOST_ASSERT(u <= 0.5); T a, b, c, d, q, x, y; if (ndf > 1e20f) return -boost::math::erfc_inv(2 * u, pol) * constants::root_two
(); a = 1 / (ndf - 0.5f); b = 48 / (a * a); c = ((20700 * a / b - 98) * a - 16) * a + 96.36f; d = ((94.5f / (b + c) - 3) / b + 1) * sqrt(a * constants::pi
() / 2) * ndf; y = pow(d * 2 * u, 2 / ndf); if (y > (0.05f + a)) { // // Asymptotic inverse expansion about normal: // x = -boost::math::erfc_inv(2 * u, pol) * constants::root_two
(); y = x * x; if (ndf < 5) c += 0.3f * (ndf - 4.5f) * (x + 0.6f); c += (((0.05f * d * x - 5) * x - 7) * x - 2) * x + b; y = (((((0.4f * y + 6.3f) * y + 36) * y + 94.5f) / c - y - 3) / b + 1) * x; y = boost::math::expm1(a * y * y, pol); } else { y = ((1 / (((ndf + 6) / (ndf * y) - 0.089f * d - 0.822f) * (ndf + 2) * 3) + 0.5 / (ndf + 4)) * y - 1) * (ndf + 1) / (ndf + 2) + 1 / y; } q = sqrt(ndf * y); return -q; } // // Tail and body series are due to Shaw: // // www.mth.kcl.ac.uk/�shaww/web_page/papers/Tdistribution06.pdf // // Shaw, W.T., 2006, "Sampling Student�s T distribution � use of // the inverse cumulative distribution function." // Journal of Computational Finance, Vol 9 Issue 4, pp 37-73, Summer 2006 // template
T inverse_students_t_tail_series(T df, T v, const Policy& pol) { BOOST_MATH_STD_USING // Tail series expansion, see section 6 of Shaw's paper. // w is calculated using Eq 60: T w = boost::math::tgamma_delta_ratio(df / 2, constants::half
(), pol) * sqrt(df * constants::pi
()) * v; // define some variables: T np2 = df + 2; T np4 = df + 4; T np6 = df + 6; // // Calculate the coefficients d(k), these depend only on the // number of degrees of freedom df, so at least in theory // we could tabulate these for fixed df, see p15 of Shaw: // T d[7] = { 1, }; d[1] = -(df + 1) / (2 * np2); np2 *= (df + 2); d[2] = -df * (df + 1) * (df + 3) / (8 * np2 * np4); np2 *= df + 2; d[3] = -df * (df + 1) * (df + 5) * (((3 * df) + 7) * df -2) / (48 * np2 * np4 * np6); np2 *= (df + 2); np4 *= (df + 4); d[4] = -df * (df + 1) * (df + 7) * ( (((((15 * df) + 154) * df + 465) * df + 286) * df - 336) * df + 64 ) / (384 * np2 * np4 * np6 * (df + 8)); np2 *= (df + 2); d[5] = -df * (df + 1) * (df + 3) * (df + 9) * (((((((35 * df + 452) * df + 1573) * df + 600) * df - 2020) * df) + 928) * df -128) / (1280 * np2 * np4 * np6 * (df + 8) * (df + 10)); np2 *= (df + 2); np4 *= (df + 4); np6 *= (df + 6); d[6] = -df * (df + 1) * (df + 11) * ((((((((((((945 * df) + 31506) * df + 425858) * df + 2980236) * df + 11266745) * df + 20675018) * df + 7747124) * df - 22574632) * df - 8565600) * df + 18108416) * df - 7099392) * df + 884736) / (46080 * np2 * np4 * np6 * (df + 8) * (df + 10) * (df +12)); // // Now bring everthing together to provide the result, // this is Eq 62 of Shaw: // T rn = sqrt(df); T div = pow(rn * w, 1 / df); T power = div * div; T result = tools::evaluate_polynomial(d, power); result *= rn; result /= div; return -result; } template
T inverse_students_t_body_series(T df, T u, const Policy& pol) { BOOST_MATH_STD_USING // // Body series for small N: // // Start with Eq 56 of Shaw: // T v = boost::math::tgamma_delta_ratio(df / 2, constants::half
(), pol) * sqrt(df * constants::pi
()) * (u - constants::half
()); // // Workspace for the polynomial coefficients: // T c[11] = { 0, 1, }; // // Figure out what the coefficients are, note these depend // only on the degrees of freedom (Eq 57 of Shaw): // c[2] = T(1) / 6 + T(1) / (6 * df); T in = 1 / df; c[3] = (((T(1) / 120) * in) + (T(1) / 15)) * in + (T(7) / 120); c[4] = ((((T(1) / 5040) * in + (T(1) / 560)) * in + (T(3) / 112)) * in + T(127) / 5040); c[5] = ((((T(1) / 362880) * in + (T(17) / 45360)) * in + (T(67) / 60480)) * in + (T(479) / 45360)) * in + (T(4369) / 362880); c[6] = ((((((T(1) / 39916800) * in + (T(2503) / 39916800)) * in + (T(11867) / 19958400)) * in + (T(1285) / 798336)) * in + (T(153161) / 39916800)) * in + (T(34807) / 5702400)); c[7] = (((((((T(1) / 6227020800LL) * in + (T(37) / 2402400)) * in + (T(339929) / 2075673600LL)) * in + (T(67217) / 97297200)) * in + (T(870341) / 691891200LL)) * in + (T(70691) / 64864800LL)) * in + (T(20036983LL) / 6227020800LL)); c[8] = (((((((T(1) / 1307674368000LL) * in + (T(1042243LL) / 261534873600LL)) * in + (T(21470159) / 435891456000LL)) * in + (T(326228899LL) / 1307674368000LL)) * in + (T(843620579) / 1307674368000LL)) * in + (T(332346031LL) / 435891456000LL)) * in + (T(43847599) / 1307674368000LL)) * in + (T(2280356863LL) / 1307674368000LL); c[9] = (((((((((T(1) / 355687428096000LL)) * in + (T(24262727LL) / 22230464256000LL)) * in + (T(123706507LL) / 8083805184000LL)) * in + (T(404003599LL) / 4446092851200LL)) * in + (T(51811946317LL) / 177843714048000LL)) * in + (T(91423417LL) / 177843714048LL)) * in + (T(32285445833LL) / 88921857024000LL)) * in + (T(531839683LL) / 1710035712000LL)) * in + (T(49020204823LL) / 50812489728000LL); c[10] = (((((((((T(1) / 121645100408832000LL) * in + (T(4222378423LL) / 13516122267648000LL)) * in + (T(49573465457LL) / 10137091700736000LL)) * in + (T(176126809LL) / 5304600576000LL)) * in + (T(44978231873LL) / 355687428096000LL)) * in + (T(5816850595639LL) / 20274183401472000LL)) * in + (T(73989712601LL) / 206879422464000LL)) * in + (T(26591354017LL) / 259925428224000LL)) * in + (T(14979648446341LL) / 40548366802944000LL)) * in + (T(65967241200001LL) / 121645100408832000LL); // // The result is then a polynomial in v (see Eq 56 of Shaw): // return tools::evaluate_odd_polynomial(c, v); } template
T inverse_students_t(T df, T u, T v, const Policy& pol, bool* pexact = 0) { // // df = number of degrees of freedom. // u = probablity. // v = 1 - u. // l = lanczos type to use. // BOOST_MATH_STD_USING bool invert = false; T result = 0; if(pexact) *pexact = false; if(u > v) { // function is symmetric, invert it: std::swap(u, v); invert = true; } if((floor(df) == df) && (df < 20)) { // // we have integer degrees of freedom, try for the special // cases first: // T tolerance = ldexp(1.0f, (2 * policies::digits
()) / 3); switch(boost::math::tools::real_cast
(df)) { case 1: { // // df = 1 is the same as the Cauchy distribution, see // Shaw Eq 35: // if(u == 0.5) result = 0; else result = -cos(constants::pi
() * u) / sin(constants::pi
() * u); if(pexact) *pexact = true; break; } case 2: { // // df = 2 has an exact result, see Shaw Eq 36: // result =(2 * u - 1) / sqrt(2 * u * v); if(pexact) *pexact = true; break; } case 4: { // // df = 4 has an exact result, see Shaw Eq 38 & 39: // T alpha = 4 * u * v; T root_alpha = sqrt(alpha); T r = 4 * cos(acos(root_alpha) / 3) / root_alpha; T x = sqrt(r - 4); result = u - 0.5f < 0 ? -x : x; if(pexact) *pexact = true; break; } case 6: { // // We get numeric overflow in this area: // if(u < 1e-150) return (invert ? -1 : 1) * inverse_students_t_hill(df, u, pol); // // Newton-Raphson iteration of a polynomial case, // choice of seed value is taken from Shaw's online // supplement: // T a = 4 * (u - u * u);//1 - 4 * (u - 0.5f) * (u - 0.5f); T b = boost::math::cbrt(a); static const T c = 0.85498797333834849467655443627193L; T p = 6 * (1 + c * (1 / b - 1)); T p0; do{ T p2 = p * p; T p4 = p2 * p2; T p5 = p * p4; p0 = p; // next term is given by Eq 41: p = 2 * (8 * a * p5 - 270 * p2 + 2187) / (5 * (4 * a * p4 - 216 * p - 243)); }while(fabs((p - p0) / p) > tolerance); // // Use Eq 45 to extract the result: // p = sqrt(p - df); result = (u - 0.5f) < 0 ? -p : p; break; } #if 0 // // These are Shaw's "exact" but iterative solutions // for even df, the numerical accuracy of these is // rather less than Hill's method, so these are disabled // for now, which is a shame because they are reasonably // quick to evaluate... // case 8: { // // Newton-Raphson iteration of a polynomial case, // choice of seed value is taken from Shaw's online // supplement: // static const T c8 = 0.85994765706259820318168359251872L; T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f); T b = pow(a, T(1) / 4); T p = 8 * (1 + c8 * (1 / b - 1)); T p0 = p; do{ T p5 = p * p; p5 *= p5 * p; p0 = p; // Next term is given by Eq 42: p = 2 * (3 * p + (640 * (160 + p * (24 + p * (p + 4)))) / (-5120 + p * (-2048 - 960 * p + a * p5))) / 7; }while(fabs((p - p0) / p) > tolerance); // // Use Eq 45 to extract the result: // p = sqrt(p - df); result = (u - 0.5f) < 0 ? -p : p; break; } case 10: { // // Newton-Raphson iteration of a polynomial case, // choice of seed value is taken from Shaw's online // supplement: // static const T c10 = 0.86781292867813396759105692122285L; T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f); T b = pow(a, T(1) / 5); T p = 10 * (1 + c10 * (1 / b - 1)); T p0; do{ T p6 = p * p; p6 *= p6 * p6; p0 = p; // Next term given by Eq 43: p = (8 * p) / 9 + (218750 * (21875 + 4 * p * (625 + p * (75 + 2 * p * (5 + p))))) / (9 * (-68359375 + 8 * p * (-2343750 + p * (-546875 - 175000 * p + 8 * a * p6)))); }while(fabs((p - p0) / p) > tolerance); // // Use Eq 45 to extract the result: // p = sqrt(p - df); result = (u - 0.5f) < 0 ? -p : p; break; } #endif default: goto calculate_real; } } else { calculate_real: if(df < 3) { // // Use a roughly linear scheme to choose between Shaw's // tail series and body series: // T crossover = 0.2742f - df * 0.0242143f; if(u > crossover) { result = boost::math::detail::inverse_students_t_body_series(df, u, pol); } else { result = boost::math::detail::inverse_students_t_tail_series(df, u, pol); } } else { // // Use Hill's method except in the exteme tails // where we use Shaw's tail series. // The crossover point is roughly exponential in -df: // T crossover = ldexp(1.0f, tools::real_cast
(df / -0.654f)); if(u > crossover) { result = boost::math::detail::inverse_students_t_hill(df, u, pol); } else { result = boost::math::detail::inverse_students_t_tail_series(df, u, pol); } } } return invert ? -result : result; } template
inline T find_ibeta_inv_from_t_dist(T a, T p, T q, T* py, const Policy& pol) { T u = (p > q) ? 0.5f - q / 2 : p / 2; T v = 1 - u; // u < 0.5 so no cancellation error T df = a * 2; T t = boost::math::detail::inverse_students_t(df, u, v, pol); T x = df / (df + t * t); *py = t * t / (df + t * t); return x; } template
inline T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const mpl::false_*) { BOOST_MATH_STD_USING // // Need to use inverse incomplete beta to get // required precision so not so fast: // T probability = (p > 0.5) ? 1 - p : p; T t, x, y; x = ibeta_inv(df / 2, T(0.5), 2 * probability, &y, pol); if(df * y > tools::max_value
() * x) t = policies::raise_overflow_error
("boost::math::students_t_quantile<%1%>(%1%,%1%)", 0, pol); else t = sqrt(df * y / x); // // Figure out sign based on the size of p: // if(p < 0.5) t = -t; return t; } template
T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const mpl::true_*) { BOOST_MATH_STD_USING bool invert = false; if((df < 2) && (floor(df) != df)) return boost::math::detail::fast_students_t_quantile_imp(df, p, pol, static_cast
(0)); if(p > 0.5) { p = 1 - p; invert = true; } // // Get an estimate of the result: // bool exact; T t = inverse_students_t(df, p, 1-p, pol, &exact); if((t == 0) || exact) return invert ? -t : t; // can't do better! // // Change variables to inverse incomplete beta: // T t2 = t * t; T xb = df / (df + t2); T y = t2 / (df + t2); T a = df / 2; // // t can be so large that x underflows, // just return our estimate in that case: // if(xb == 0) return t; // // Get incomplete beta and it's derivative: // T f1; T f0 = xb < y ? ibeta_imp(a, constants::half
(), xb, pol, false, true, &f1) : ibeta_imp(constants::half
(), a, y, pol, true, true, &f1); // Get cdf from incomplete beta result: T p0 = f0 / 2 - p; // Get pdf from derivative: T p1 = f1 * sqrt(y * xb * xb * xb / df); // // Second derivative divided by p1: // // yacas gives: // // In> PrettyForm(Simplify(D(t) (1 + t^2/v) ^ (-(v+1)/2))) // // | | v + 1 | | // | -| ----- + 1 | | // | | 2 | | // -| | 2 | | // | | t | | // | | -- + 1 | | // | ( v + 1 ) * | v | * t | // --------------------------------------------- // v // // Which after some manipulation is: // // -p1 * t * (df + 1) / (t^2 + df) // T p2 = t * (df + 1) / (t * t + df); // Halley step: t = fabs(t); t += p0 / (p1 + p0 * p2 / 2); return !invert ? -t : t; } template
inline T fast_students_t_quantile(T df, T p, const Policy& pol) { typedef typename policies::evaluation
::type value_type; typedef typename policies::normalise< Policy, policies::promote_float
, policies::promote_double
, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; typedef mpl::bool_< (std::numeric_limits
::digits <= 53) && (std::numeric_limits
::is_specialized)> tag_type; return policies::checked_narrowing_cast
(fast_students_t_quantile_imp(static_cast
(df), static_cast
(p), pol, static_cast
(0)), "boost::math::students_t_quantile<%1%>(%1%,%1%,%1%)"); } }}} // namespaces #endif // BOOST_MATH_SF_DETAIL_INV_T_HPP
t_distribution_inv.hpp
Page URL
File URL
Prev
23/24
Next
Download
( 17 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.