DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SF_ERF_INV_HPP #define BOOST_MATH_SF_ERF_INV_HPP namespace boost{ namespace math{ namespace detail{ // // The inverse erf and erfc functions share a common implementation, // this version is for 80-bit long double's and smaller: // template
T erf_inv_imp(const T& p, const T& q, const Policy&, const boost::mpl::int_<64>*) { BOOST_MATH_STD_USING // for ADL of std names. T result = 0; if(p <= 0.5) { // // Evaluate inverse erf using the rational approximation: // // x = p(p+10)(Y+R(p)) // // Where Y is a constant, and R(p) is optimised for a low // absolute error compared to |Y|. // // double: Max error found: 2.001849e-18 // long double: Max error found: 1.017064e-20 // Maximum Deviation Found (actual error term at infinite precision) 8.030e-21 // static const float Y = 0.0891314744949340820313f; static const T P[] = { -0.000508781949658280665617L, -0.00836874819741736770379L, 0.0334806625409744615033L, -0.0126926147662974029034L, -0.0365637971411762664006L, 0.0219878681111168899165L, 0.00822687874676915743155L, -0.00538772965071242932965L }; static const T Q[] = { 1, -0.970005043303290640362L, -1.56574558234175846809L, 1.56221558398423026363L, 0.662328840472002992063L, -0.71228902341542847553L, -0.0527396382340099713954L, 0.0795283687341571680018L, -0.00233393759374190016776L, 0.000886216390456424707504L }; T g = p * (p + 10); T r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p); result = g * Y + g * r; } else if(q >= 0.25) { // // Rational approximation for 0.5 > q >= 0.25 // // x = sqrt(-2*log(q)) / (Y + R(q)) // // Where Y is a constant, and R(q) is optimised for a low // absolute error compared to Y. // // double : Max error found: 7.403372e-17 // long double : Max error found: 6.084616e-20 // Maximum Deviation Found (error term) 4.811e-20 // static const float Y = 2.249481201171875f; static const T P[] = { -0.202433508355938759655L, 0.105264680699391713268L, 8.37050328343119927838L, 17.6447298408374015486L, -18.8510648058714251895L, -44.6382324441786960818L, 17.445385985570866523L, 21.1294655448340526258L, -3.67192254707729348546L }; static const T Q[] = { 1L, 6.24264124854247537712L, 3.9713437953343869095L, -28.6608180499800029974L, -20.1432634680485188801L, 48.5609213108739935468L, 10.8268667355460159008L, -22.6436933413139721736L, 1.72114765761200282724L }; T g = sqrt(-2 * log(q)); T xs = q - 0.25; T r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = g / (Y + r); } else { // // For q < 0.25 we have a series of rational approximations all // of the general form: // // let: x = sqrt(-log(q)) // // Then the result is given by: // // x(Y+R(x-B)) // // where Y is a constant, B is the lowest value of x for which // the approximation is valid, and R(x-B) is optimised for a low // absolute error compared to Y. // // Note that almost all code will really go through the first // or maybe second approximation. After than we're dealing with very // small input values indeed: 80 and 128 bit long double's go all the // way down to ~ 1e-5000 so the "tail" is rather long... // T x = sqrt(-log(q)); if(x < 3) { // Max error found: 1.089051e-20 static const float Y = 0.807220458984375f; static const T P[] = { -0.131102781679951906451L, -0.163794047193317060787L, 0.117030156341995252019L, 0.387079738972604337464L, 0.337785538912035898924L, 0.142869534408157156766L, 0.0290157910005329060432L, 0.00214558995388805277169L, -0.679465575181126350155e-6L, 0.285225331782217055858e-7L, -0.681149956853776992068e-9L }; static const T Q[] = { 1, 3.46625407242567245975L, 5.38168345707006855425L, 4.77846592945843778382L, 2.59301921623620271374L, 0.848854343457902036425L, 0.152264338295331783612L, 0.01105924229346489121L }; T xs = x - 1.125; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } else if(x < 6) { // Max error found: 8.389174e-21 static const float Y = 0.93995571136474609375f; static const T P[] = { -0.0350353787183177984712L, -0.00222426529213447927281L, 0.0185573306514231072324L, 0.00950804701325919603619L, 0.00187123492819559223345L, 0.000157544617424960554631L, 0.460469890584317994083e-5L, -0.230404776911882601748e-9L, 0.266339227425782031962e-11L }; static const T Q[] = { 1L, 1.3653349817554063097L, 0.762059164553623404043L, 0.220091105764131249824L, 0.0341589143670947727934L, 0.00263861676657015992959L, 0.764675292302794483503e-4L }; T xs = x - 3; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } else if(x < 18) { // Max error found: 1.481312e-19 static const float Y = 0.98362827301025390625f; static const T P[] = { -0.0167431005076633737133L, -0.00112951438745580278863L, 0.00105628862152492910091L, 0.000209386317487588078668L, 0.149624783758342370182e-4L, 0.449696789927706453732e-6L, 0.462596163522878599135e-8L, -0.281128735628831791805e-13L, 0.99055709973310326855e-16L }; static const T Q[] = { 1L, 0.591429344886417493481L, 0.138151865749083321638L, 0.0160746087093676504695L, 0.000964011807005165528527L, 0.275335474764726041141e-4L, 0.282243172016108031869e-6L }; T xs = x - 6; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } else if(x < 44) { // Max error found: 5.697761e-20 static const float Y = 0.99714565277099609375f; static const T P[] = { -0.0024978212791898131227L, -0.779190719229053954292e-5L, 0.254723037413027451751e-4L, 0.162397777342510920873e-5L, 0.396341011304801168516e-7L, 0.411632831190944208473e-9L, 0.145596286718675035587e-11L, -0.116765012397184275695e-17L }; static const T Q[] = { 1L, 0.207123112214422517181L, 0.0169410838120975906478L, 0.000690538265622684595676L, 0.145007359818232637924e-4L, 0.144437756628144157666e-6L, 0.509761276599778486139e-9L }; T xs = x - 18; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } else { // Max error found: 1.279746e-20 static const float Y = 0.99941349029541015625f; static const T P[] = { -0.000539042911019078575891L, -0.28398759004727721098e-6L, 0.899465114892291446442e-6L, 0.229345859265920864296e-7L, 0.225561444863500149219e-9L, 0.947846627503022684216e-12L, 0.135880130108924861008e-14L, -0.348890393399948882918e-21L }; static const T Q[] = { 1L, 0.0845746234001899436914L, 0.00282092984726264681981L, 0.468292921940894236786e-4L, 0.399968812193862100054e-6L, 0.161809290887904476097e-8L, 0.231558608310259605225e-11L }; T xs = x - 44; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } } return result; } template
struct erf_roots { std::tr1::tuple
operator()(const T& guess) { BOOST_MATH_STD_USING T derivative = sign * (2 / sqrt(constants::pi
())) * exp(-(guess * guess)); T derivative2 = -2 * guess * derivative; return std::tr1::make_tuple(((sign > 0) ? boost::math::erf(guess, Policy()) : boost::math::erfc(guess, Policy())) - target, derivative, derivative2); } erf_roots(T z, int s) : target(z), sign(s) {} private: T target; int sign; }; template
T erf_inv_imp(const T& p, const T& q, const Policy& pol, const boost::mpl::int_<0>*) { // // Generic version, get a guess that's accurate to 64-bits (10^-19) // T guess = erf_inv_imp(p, q, pol, static_cast
const*>(0)); T result; // // If T has more bit's than 64 in it's mantissa then we need to iterate, // otherwise we can just return the result: // if(policies::digits
() > 64) { if(p <= 0.5) { result = tools::halley_iterate(detail::erf_roots
::type, Policy>(p, 1), guess, static_cast
(0), tools::max_value
(), (policies::digits
() * 2) / 3); } else { result = tools::halley_iterate(detail::erf_roots
::type, Policy>(q, -1), guess, static_cast
(0), tools::max_value
(), (policies::digits
() * 2) / 3); } } else { result = guess; } return result; } } // namespace detail template
typename tools::promote_args
::type erfc_inv(T z, const Policy& pol) { typedef typename tools::promote_args
::type result_type; // // Begin by testing for domain errors, and other special cases: // static const char* function = "boost::math::erfc_inv<%1%>(%1%, %1%)"; if((z < 0) || (z > 2)) policies::raise_domain_error
(function, "Argument outside range [0,2] in inverse erfc function (got p=%1%).", z, pol); if(z == 0) return policies::raise_overflow_error
(function, 0, pol); if(z == 2) return -policies::raise_overflow_error
(function, 0, pol); // // Normalise the input, so it's in the range [0,1], we will // negate the result if z is outside that range. This is a simple // application of the erfc reflection formula: erfc(-z) = 2 - erfc(z) // result_type p, q, s; if(z > 1) { q = 2 - z; p = 1 - q; s = -1; } else { p = 1 - z; q = z; s = 1; } // // A bit of meta-programming to figure out which implementation // to use, based on the number of bits in the mantissa of T: // typedef typename policies::precision
::type precision_type; typedef typename mpl::if_< mpl::or_
>, mpl::greater
> >, mpl::int_<0>, mpl::int_<64> >::type tag_type; // // Likewise use internal promotion, so we evaluate at a higher // precision internally if it's appropriate: // typedef typename policies::evaluation
::type eval_type; typedef typename policies::normalise< Policy, policies::promote_float
, policies::promote_double
, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; // // And get the result, negating where required: // return s * policies::checked_narrowing_cast
( detail::erf_inv_imp(static_cast
(p), static_cast
(q), forwarding_policy(), static_cast
(0)), function); } template
typename tools::promote_args
::type erf_inv(T z, const Policy& pol) { typedef typename tools::promote_args
::type result_type; // // Begin by testing for domain errors, and other special cases: // static const char* function = "boost::math::erf_inv<%1%>(%1%, %1%)"; if((z < -1) || (z > 1)) policies::raise_domain_error
(function, "Argument outside range [-1, 1] in inverse erf function (got p=%1%).", z, pol); if(z == 1) return policies::raise_overflow_error
(function, 0, pol); if(z == -1) return -policies::raise_overflow_error
(function, 0, pol); if(z == 0) return 0; // // Normalise the input, so it's in the range [0,1], we will // negate the result if z is outside that range. This is a simple // application of the erf reflection formula: erf(-z) = -erf(z) // result_type p, q, s; if(z < 0) { p = -z; q = 1 - p; s = -1; } else { p = z; q = 1 - z; s = 1; } // // A bit of meta-programming to figure out which implementation // to use, based on the number of bits in the mantissa of T: // typedef typename policies::precision
::type precision_type; typedef typename mpl::if_< mpl::or_
>, mpl::greater
> >, mpl::int_<0>, mpl::int_<64> >::type tag_type; // // Likewise use internal promotion, so we evaluate at a higher // precision internally if it's appropriate: // typedef typename policies::evaluation
::type eval_type; typedef typename policies::normalise< Policy, policies::promote_float
, policies::promote_double
, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; // // Likewise use internal promotion, so we evaluate at a higher // precision internally if it's appropriate: // typedef typename policies::evaluation
::type eval_type; // // And get the result, negating where required: // return s * policies::checked_narrowing_cast
( detail::erf_inv_imp(static_cast
(p), static_cast
(q), forwarding_policy(), static_cast
(0)), function); } template
inline typename tools::promote_args
::type erfc_inv(T z) { return erfc_inv(z, policies::policy<>()); } template
inline typename tools::promote_args
::type erf_inv(T z) { return erf_inv(z, policies::policy<>()); } } // namespace math } // namespace boost #endif // BOOST_MATH_SF_ERF_INV_HPP
erf_inv.hpp
Page URL
File URL
Prev
15/24
Next
Download
( 15 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.