DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_IK_HPP #define BOOST_MATH_BESSEL_IK_HPP #include
#include
#include
#include
#include
// Modified Bessel functions of the first and second kind of fractional order namespace boost { namespace math { namespace detail { // Calculate K(v, x) and K(v+1, x) by method analogous to // Temme, Journal of Computational Physics, vol 21, 343 (1976) template
int temme_ik(T v, T x, T* K, T* K1, const Policy& pol) { T f, h, p, q, coef, sum, sum1, tolerance; T a, b, c, d, sigma, gamma1, gamma2; unsigned long k; BOOST_MATH_STD_USING using namespace boost::math::tools; using namespace boost::math::constants; // |x| <= 2, Temme series converge rapidly // |x| > 2, the larger the |x|, the slower the convergence BOOST_ASSERT(abs(x) <= 2); BOOST_ASSERT(abs(v) <= 0.5f); T gp = boost::math::tgamma1pm1(v, pol); T gm = boost::math::tgamma1pm1(-v, pol); a = log(x / 2); b = exp(v * a); sigma = -a * v; c = abs(v) < tools::epsilon
() ? 1 : boost::math::sin_pi(v) / (v * pi
()); d = abs(sigma) < tools::epsilon
() ? 1 : sinh(sigma) / sigma; gamma1 = abs(v) < tools::epsilon
() ? -euler
() : (0.5f / v) * (gp - gm) * c; gamma2 = (2 + gp + gm) * c / 2; // initial values p = (gp + 1) / (2 * b); q = (1 + gm) * b / 2; f = (cosh(sigma) * gamma1 + d * (-a) * gamma2) / c; h = p; coef = 1; sum = coef * f; sum1 = coef * h; // series summation tolerance = tools::epsilon
(); for (k = 1; k < policies::get_max_series_iterations
(); k++) { f = (k * f + p + q) / (k*k - v*v); p /= k - v; q /= k + v; h = p - k * f; coef *= x * x / (4 * k); sum += coef * f; sum1 += coef * h; if (abs(coef * f) < abs(sum) * tolerance) { break; } } policies::check_series_iterations("boost::math::bessel_ik<%1%>(%1%,%1%) in temme_ik", k, pol); *K = sum; *K1 = 2 * sum1 / x; return 0; } // Evaluate continued fraction fv = I_(v+1) / I_v, derived from // Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73 template
int CF1_ik(T v, T x, T* fv, const Policy& pol) { T C, D, f, a, b, delta, tiny, tolerance; unsigned long k; BOOST_MATH_STD_USING // |x| <= |v|, CF1_ik converges rapidly // |x| > |v|, CF1_ik needs O(|x|) iterations to converge // modified Lentz's method, see // Lentz, Applied Optics, vol 15, 668 (1976) tolerance = 2 * tools::epsilon
(); BOOST_MATH_INSTRUMENT_VARIABLE(tolerance); tiny = sqrt(tools::min_value
()); BOOST_MATH_INSTRUMENT_VARIABLE(tiny); C = f = tiny; // b0 = 0, replace with tiny D = 0; for (k = 1; k < policies::get_max_series_iterations
(); k++) { a = 1; b = 2 * (v + k) / x; C = b + a / C; D = b + a * D; if (C == 0) { C = tiny; } if (D == 0) { D = tiny; } D = 1 / D; delta = C * D; f *= delta; BOOST_MATH_INSTRUMENT_VARIABLE(delta-1); if (abs(delta - 1) <= tolerance) { break; } } BOOST_MATH_INSTRUMENT_VARIABLE(k); policies::check_series_iterations("boost::math::bessel_ik<%1%>(%1%,%1%) in CF1_ik", k, pol); *fv = f; return 0; } // Calculate K(v, x) and K(v+1, x) by evaluating continued fraction // z1 / z0 = U(v+1.5, 2v+1, 2x) / U(v+0.5, 2v+1, 2x), see // Thompson and Barnett, Computer Physics Communications, vol 47, 245 (1987) template
int CF2_ik(T v, T x, T* Kv, T* Kv1, const Policy& pol) { BOOST_MATH_STD_USING using namespace boost::math::constants; T S, C, Q, D, f, a, b, q, delta, tolerance, current, prev; unsigned long k; // |x| >= |v|, CF2_ik converges rapidly // |x| -> 0, CF2_ik fails to converge BOOST_ASSERT(abs(x) > 1); // Steed's algorithm, see Thompson and Barnett, // Journal of Computational Physics, vol 64, 490 (1986) tolerance = tools::epsilon
(); a = v * v - 0.25f; b = 2 * (x + 1); // b1 D = 1 / b; // D1 = 1 / b1 f = delta = D; // f1 = delta1 = D1, coincidence prev = 0; // q0 current = 1; // q1 Q = C = -a; // Q1 = C1 because q1 = 1 S = 1 + Q * delta; // S1 BOOST_MATH_INSTRUMENT_VARIABLE(tolerance); BOOST_MATH_INSTRUMENT_VARIABLE(a); BOOST_MATH_INSTRUMENT_VARIABLE(b); BOOST_MATH_INSTRUMENT_VARIABLE(D); BOOST_MATH_INSTRUMENT_VARIABLE(f); for (k = 2; k < policies::get_max_series_iterations
(); k++) // starting from 2 { // continued fraction f = z1 / z0 a -= 2 * (k - 1); b += 2; D = 1 / (b + a * D); delta *= b * D - 1; f += delta; // series summation S = 1 + \sum_{n=1}^{\infty} C_n * z_n / z_0 q = (prev - (b - 2) * current) / a; prev = current; current = q; // forward recurrence for q C *= -a / k; Q += C * q; S += Q * delta; // S converges slower than f BOOST_MATH_INSTRUMENT_VARIABLE(Q * delta); BOOST_MATH_INSTRUMENT_VARIABLE(abs(S) * tolerance); if (abs(Q * delta) < abs(S) * tolerance) { break; } } policies::check_series_iterations("boost::math::bessel_ik<%1%>(%1%,%1%) in CF2_ik", k, pol); *Kv = sqrt(pi
() / (2 * x)) * exp(-x) / S; *Kv1 = *Kv * (0.5f + v + x + (v * v - 0.25f) * f) / x; BOOST_MATH_INSTRUMENT_VARIABLE(*Kv); BOOST_MATH_INSTRUMENT_VARIABLE(*Kv1); return 0; } enum{ need_i = 1, need_k = 2 }; // Compute I(v, x) and K(v, x) simultaneously by Temme's method, see // Temme, Journal of Computational Physics, vol 19, 324 (1975) template
int bessel_ik(T v, T x, T* I, T* K, int kind, const Policy& pol) { // Kv1 = K_(v+1), fv = I_(v+1) / I_v // Ku1 = K_(u+1), fu = I_(u+1) / I_u T u, Iv, Kv, Kv1, Ku, Ku1, fv; T W, current, prev, next; bool reflect = false; unsigned n, k; BOOST_MATH_INSTRUMENT_VARIABLE(v); BOOST_MATH_INSTRUMENT_VARIABLE(x); BOOST_MATH_INSTRUMENT_VARIABLE(kind); BOOST_MATH_STD_USING using namespace boost::math::tools; using namespace boost::math::constants; static const char* function = "boost::math::bessel_ik<%1%>(%1%,%1%)"; if (v < 0) { reflect = true; v = -v; // v is non-negative from here kind |= need_k; } n = tools::real_cast
(v + 0.5f); u = v - n; // -1/2 <= u < 1/2 BOOST_MATH_INSTRUMENT_VARIABLE(n); BOOST_MATH_INSTRUMENT_VARIABLE(u); if (x < 0) { *I = *K = policies::raise_domain_error
(function, "Got x = %1% but real argument x must be non-negative, complex number result not supported.", x, pol); return 1; } if (x == 0) { Iv = (v == 0) ? static_cast
(1) : static_cast
(0); if(kind & need_k) { Kv = policies::raise_overflow_error
(function, 0, pol); } else { Kv = std::numeric_limits
::quiet_NaN(); // any value will do } if(reflect && (kind & need_i)) { T z = (u + n % 2); Iv = boost::math::sin_pi(z, pol) == 0 ? Iv : policies::raise_overflow_error
(function, 0, pol); // reflection formula } *I = Iv; *K = Kv; return 0; } // x is positive until reflection W = 1 / x; // Wronskian if (x <= 2) // x in (0, 2] { temme_ik(u, x, &Ku, &Ku1, pol); // Temme series } else // x in (2, \infty) { CF2_ik(u, x, &Ku, &Ku1, pol); // continued fraction CF2_ik } prev = Ku; current = Ku1; for (k = 1; k <= n; k++) // forward recurrence for K { next = 2 * (u + k) * current / x + prev; prev = current; current = next; } Kv = prev; Kv1 = current; if(kind & need_i) { T lim = (4 * v * v + 10) / (8 * x); lim *= lim; lim *= lim; lim /= 24; if((lim < tools::epsilon
() * 10) && (x > 100)) { // x is huge compared to v, CF1 may be very slow // to converge so use asymptotic expansion for large // x case instead. Note that the asymptotic expansion // isn't very accurate - so it's deliberately very hard // to get here - probably we're going to overflow: Iv = asymptotic_bessel_i_large_x(v, x, pol); } else { CF1_ik(v, x, &fv, pol); // continued fraction CF1_ik Iv = W / (Kv * fv + Kv1); // Wronskian relation } } else Iv = std::numeric_limits
::quiet_NaN(); // any value will do if (reflect) { T z = (u + n % 2); *I = Iv + (2 / pi
()) * boost::math::sin_pi(z) * Kv; // reflection formula *K = Kv; } else { *I = Iv; *K = Kv; } BOOST_MATH_INSTRUMENT_VARIABLE(*I); BOOST_MATH_INSTRUMENT_VARIABLE(*K); return 0; } }}} // namespaces #endif // BOOST_MATH_BESSEL_IK_HPP
bessel_ik.hpp
Page URL
File URL
Prev
3/24
Next
Download
( 10 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.