DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTERPROCESS_DETAIL_MEM_ALGO_COMMON_HPP #define BOOST_INTERPROCESS_DETAIL_MEM_ALGO_COMMON_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include
#include
#include
#include
#include
#include
#include
#include
#include
//!\file //!Implements common operations for memory algorithms. namespace boost { namespace interprocess { namespace detail { template
struct multi_allocation_next { typedef typename detail:: pointer_to_other
::type multi_allocation_next_ptr; multi_allocation_next(multi_allocation_next_ptr n) : next_(n) {} multi_allocation_next_ptr next_; }; //!This iterator is returned by "allocate_many" functions so that //!the user can access the multiple buffers allocated in a single call template
class basic_multiallocation_iterator : public std::iterator
{ void unspecified_bool_type_func() const {} typedef void (basic_multiallocation_iterator::*unspecified_bool_type)() const; typedef typename detail:: pointer_to_other
>::type multi_allocation_next_ptr; public: typedef char value_type; typedef value_type & reference; typedef value_type * pointer; basic_multiallocation_iterator() : next_alloc_(0) {} basic_multiallocation_iterator(multi_allocation_next_ptr next) : next_alloc_(next) {} basic_multiallocation_iterator &operator=(const basic_multiallocation_iterator &other) { next_alloc_ = other.next_alloc_; return *this; } public: basic_multiallocation_iterator& operator++() { next_alloc_.next_ = detail::get_pointer(next_alloc_.next_->next_); return *this; } basic_multiallocation_iterator operator++(int) { basic_multiallocation_iterator result(next_alloc_.next_); ++*this; return result; } bool operator== (const basic_multiallocation_iterator& other) const { return next_alloc_.next_ == other.next_alloc_.next_; } bool operator!= (const basic_multiallocation_iterator& other) const { return !operator== (other); } reference operator*() const { return *((char*)detail::get_pointer(next_alloc_.next_)); } operator unspecified_bool_type() const { return next_alloc_.next_? &basic_multiallocation_iterator::unspecified_bool_type_func : 0; } pointer operator->() const { return &(*(*this)); } static basic_multiallocation_iterator create_simple_range(void *mem) { basic_multiallocation_iterator it; typedef multi_allocation_next
next_impl_t; next_impl_t * tmp_mem = static_cast
(mem); it = basic_multiallocation_iterator
(tmp_mem); tmp_mem->next_ = 0; return it; } private: multi_allocation_next
next_alloc_; }; template
class basic_multiallocation_chain { private: basic_multiallocation_iterator
it_; VoidPointer last_mem_; std::size_t num_mem_; basic_multiallocation_chain(const basic_multiallocation_chain &); basic_multiallocation_chain &operator=(const basic_multiallocation_chain &); public: typedef basic_multiallocation_iterator
multiallocation_iterator; basic_multiallocation_chain() : it_(0), last_mem_(0), num_mem_(0) {} void reset() { this->it_ = multiallocation_iterator(); this->last_mem_ = 0; this->num_mem_ = 0; } void push_back(void *mem) { typedef multi_allocation_next
next_impl_t; next_impl_t * tmp_mem = static_cast
(mem); if(!this->last_mem_){ this->it_ = basic_multiallocation_iterator
(tmp_mem); } else{ static_cast
(detail::get_pointer(this->last_mem_))->next_ = tmp_mem; } tmp_mem->next_ = 0; this->last_mem_ = tmp_mem; ++num_mem_; } void push_front(void *mem) { typedef multi_allocation_next
next_impl_t; next_impl_t * tmp_mem = static_cast
(mem); ++num_mem_; if(!this->last_mem_){ this->it_ = basic_multiallocation_iterator
(tmp_mem); tmp_mem->next_ = 0; this->last_mem_ = tmp_mem; } else{ next_impl_t * old_first = (next_impl_t*)(&*this->it_); tmp_mem->next_ = old_first; this->it_ = basic_multiallocation_iterator
(tmp_mem); } } void swap(basic_multiallocation_chain &other_chain) { std::swap(this->it_, other_chain.it_); std::swap(this->last_mem_, other_chain.last_mem_); std::swap(this->num_mem_, other_chain.num_mem_); } void splice_back(basic_multiallocation_chain &other_chain) { typedef multi_allocation_next
next_impl_t; multiallocation_iterator end_it; multiallocation_iterator other_it = other_chain.get_it(); multiallocation_iterator this_it = this->get_it(); if(end_it == other_it){ return; } else if(end_it == this_it){ this->swap(other_chain); } else{ static_cast
(detail::get_pointer(this->last_mem_))->next_ = (next_impl_t*)&*other_chain.it_; this->last_mem_ = other_chain.last_mem_; this->num_mem_ += other_chain.num_mem_; } } void *pop_front() { multiallocation_iterator itend; if(this->it_ == itend){ this->last_mem_= 0; this->num_mem_ = 0; return 0; } else{ void *addr = &*it_; ++it_; --num_mem_; if(!num_mem_){ this->last_mem_ = 0; this->it_ = multiallocation_iterator(); } return addr; } } bool empty() const { return !num_mem_; } multiallocation_iterator get_it() const { return it_; } std::size_t size() const { return num_mem_; } }; //!This class implements several allocation functions shared by different algorithms //!(aligned allocation, multiple allocation...). template
class memory_algorithm_common { public: typedef typename MemoryAlgorithm::void_pointer void_pointer; typedef typename MemoryAlgorithm::block_ctrl block_ctrl; typedef typename MemoryAlgorithm::multiallocation_iterator multiallocation_iterator; typedef multi_allocation_next
multi_allocation_next_t; typedef typename multi_allocation_next_t:: multi_allocation_next_ptr multi_allocation_next_ptr; typedef memory_algorithm_common
this_type; static const std::size_t Alignment = MemoryAlgorithm::Alignment; static const std::size_t MinBlockUnits = MemoryAlgorithm::MinBlockUnits; static const std::size_t AllocatedCtrlBytes = MemoryAlgorithm::AllocatedCtrlBytes; static const std::size_t AllocatedCtrlUnits = MemoryAlgorithm::AllocatedCtrlUnits; static const std::size_t BlockCtrlBytes = MemoryAlgorithm::BlockCtrlBytes; static const std::size_t BlockCtrlUnits = MemoryAlgorithm::BlockCtrlUnits; static const std::size_t UsableByPreviousChunk = MemoryAlgorithm::UsableByPreviousChunk; static void assert_alignment(const void *ptr) { assert_alignment((std::size_t)ptr); } static void assert_alignment(std::size_t uint_ptr) { (void)uint_ptr; BOOST_ASSERT(uint_ptr % Alignment == 0); } static bool check_alignment(const void *ptr) { return (((std::size_t)ptr) % Alignment == 0); } static std::size_t ceil_units(std::size_t size) { return detail::get_rounded_size(size, Alignment)/Alignment; } static std::size_t floor_units(std::size_t size) { return size/Alignment; } static std::size_t multiple_of_units(std::size_t size) { return detail::get_rounded_size(size, Alignment); } static multiallocation_iterator allocate_many (MemoryAlgorithm *memory_algo, std::size_t elem_bytes, std::size_t n_elements) { return this_type::priv_allocate_many(memory_algo, &elem_bytes, n_elements, 0); } static multiallocation_iterator allocate_many ( MemoryAlgorithm *memory_algo , const std::size_t *elem_sizes , std::size_t n_elements , std::size_t sizeof_element) { return this_type::priv_allocate_many(memory_algo, elem_sizes, n_elements, sizeof_element); } static void* allocate_aligned (MemoryAlgorithm *memory_algo, std::size_t nbytes, std::size_t alignment) { //Ensure power of 2 if ((alignment & (alignment - std::size_t(1u))) != 0){ //Alignment is not power of two BOOST_ASSERT((alignment & (alignment - std::size_t(1u))) == 0); return 0; } std::size_t real_size; if(alignment <= Alignment){ return memory_algo->priv_allocate(allocate_new, nbytes, nbytes, real_size).first; } if(nbytes > UsableByPreviousChunk) nbytes -= UsableByPreviousChunk; //We can find a aligned portion if we allocate a chunk that has alignment //nbytes + alignment bytes or more. std::size_t minimum_allocation = max_value (nbytes + alignment, std::size_t(MinBlockUnits*Alignment)); //Since we will split that chunk, we must request a bit more memory //if the alignment is near the beginning of the buffer, because otherwise, //there is no space for a new chunk before the alignment. // // ____ Aligned here // | // ----------------------------------------------------- // | MBU | // ----------------------------------------------------- std::size_t request = minimum_allocation + (2*MinBlockUnits*Alignment - AllocatedCtrlBytes //prevsize - UsableByPreviousChunk ); //Now allocate the buffer void *buffer = memory_algo->priv_allocate(allocate_new, request, request, real_size).first; if(!buffer){ return 0; } else if ((((std::size_t)(buffer)) % alignment) == 0){ //If we are lucky and the buffer is aligned, just split it and //return the high part block_ctrl *first = memory_algo->priv_get_block(buffer); std::size_t old_size = first->m_size; const std::size_t first_min_units = max_value(ceil_units(nbytes) + AllocatedCtrlUnits, std::size_t(MinBlockUnits)); //We can create a new block in the end of the segment if(old_size >= (first_min_units + MinBlockUnits)){ //block_ctrl *second = new((char*)first + Alignment*first_min_units) block_ctrl; block_ctrl *second = (block_ctrl *)((char*)first + Alignment*first_min_units); first->m_size = first_min_units; second->m_size = old_size - first->m_size; BOOST_ASSERT(second->m_size >= MinBlockUnits); memory_algo->priv_mark_new_allocated_block(first); //memory_algo->priv_tail_size(first, first->m_size); memory_algo->priv_mark_new_allocated_block(second); memory_algo->priv_deallocate(memory_algo->priv_get_user_buffer(second)); } return buffer; } //Buffer not aligned, find the aligned part. // // ____ Aligned here // | // ----------------------------------------------------- // | MBU +more | ACB | // ----------------------------------------------------- char *pos = (char*) ((std::size_t)((char*)buffer + //This is the minimum size of (2) (MinBlockUnits*Alignment - AllocatedCtrlBytes) + //This is the next MBU for the aligned memory AllocatedCtrlBytes + //This is the alignment trick alignment - 1) & -alignment); //Now obtain the address of the blocks block_ctrl *first = memory_algo->priv_get_block(buffer); block_ctrl *second = memory_algo->priv_get_block(pos); assert(pos <= ((char*)first + first->m_size*Alignment)); assert(first->m_size >= 2*MinBlockUnits); assert((pos + MinBlockUnits*Alignment - AllocatedCtrlBytes + nbytes*Alignment/Alignment) <= ((char*)first + first->m_size*Alignment)); //Set the new size of the first block std::size_t old_size = first->m_size; first->m_size = ((char*)second - (char*)first)/Alignment; memory_algo->priv_mark_new_allocated_block(first); //Now check if we can create a new buffer in the end // // __"second" block // | __Aligned here // | | __"third" block // -----------|-----|-----|------------------------------ // | MBU +more | ACB | (3) | BCU | // ----------------------------------------------------- //This size will be the minimum size to be able to create a //new chunk in the end. const std::size_t second_min_units = max_value(std::size_t(MinBlockUnits), ceil_units(nbytes) + AllocatedCtrlUnits ); //Check if we can create a new block (of size MinBlockUnits) in the end of the segment if((old_size - first->m_size) >= (second_min_units + MinBlockUnits)){ //Now obtain the address of the end block block_ctrl *third = new ((char*)second + Alignment*second_min_units)block_ctrl; second->m_size = second_min_units; third->m_size = old_size - first->m_size - second->m_size; BOOST_ASSERT(third->m_size >= MinBlockUnits); memory_algo->priv_mark_new_allocated_block(second); memory_algo->priv_mark_new_allocated_block(third); memory_algo->priv_deallocate(memory_algo->priv_get_user_buffer(third)); } else{ second->m_size = old_size - first->m_size; assert(second->m_size >= MinBlockUnits); memory_algo->priv_mark_new_allocated_block(second); } memory_algo->priv_deallocate(memory_algo->priv_get_user_buffer(first)); return memory_algo->priv_get_user_buffer(second); } static bool try_shrink (MemoryAlgorithm *memory_algo, void *ptr ,const std::size_t max_size, const std::size_t preferred_size ,std::size_t &received_size) { (void)memory_algo; //Obtain the real block block_ctrl *block = memory_algo->priv_get_block(ptr); std::size_t old_block_units = block->m_size; //The block must be marked as allocated BOOST_ASSERT(memory_algo->priv_is_allocated_block(block)); //Check if alignment and block size are right assert_alignment(ptr); //Put this to a safe value received_size = (old_block_units - AllocatedCtrlUnits)*Alignment + UsableByPreviousChunk; //Now translate it to Alignment units const std::size_t max_user_units = floor_units(max_size - UsableByPreviousChunk); const std::size_t preferred_user_units = ceil_units(preferred_size - UsableByPreviousChunk); //Check if rounded max and preferred are possible correct if(max_user_units < preferred_user_units) return false; //Check if the block is smaller than the requested minimum std::size_t old_user_units = old_block_units - AllocatedCtrlUnits; if(old_user_units < preferred_user_units) return false; //If the block is smaller than the requested minimum if(old_user_units == preferred_user_units) return true; std::size_t shrunk_user_units = ((BlockCtrlUnits - AllocatedCtrlUnits) > preferred_user_units) ? (BlockCtrlUnits - AllocatedCtrlUnits) : preferred_user_units; //Some parameter checks if(max_user_units < shrunk_user_units) return false; //We must be able to create at least a new empty block if((old_user_units - shrunk_user_units) < BlockCtrlUnits ){ return false; } //Update new size received_size = shrunk_user_units*Alignment + UsableByPreviousChunk; return true; } static bool shrink (MemoryAlgorithm *memory_algo, void *ptr ,const std::size_t max_size, const std::size_t preferred_size ,std::size_t &received_size) { //Obtain the real block block_ctrl *block = memory_algo->priv_get_block(ptr); std::size_t old_block_units = block->m_size; if(!try_shrink (memory_algo, ptr, max_size, preferred_size, received_size)){ return false; } //Check if the old size was just the shrunk size (no splitting) if((old_block_units - AllocatedCtrlUnits) == ceil_units(preferred_size - UsableByPreviousChunk)) return true; //Now we can just rewrite the size of the old buffer block->m_size = (received_size-UsableByPreviousChunk)/Alignment + AllocatedCtrlUnits; BOOST_ASSERT(block->m_size >= BlockCtrlUnits); //We create the new block // block_ctrl *new_block = new(reinterpret_cast
// (detail::char_ptr_cast(block) + block->m_size*Alignment)) block_ctrl; block_ctrl *new_block = reinterpret_cast
(detail::char_ptr_cast(block) + block->m_size*Alignment); //Write control data to simulate this new block was previously allocated //and deallocate it new_block->m_size = old_block_units - block->m_size; BOOST_ASSERT(new_block->m_size >= BlockCtrlUnits); memory_algo->priv_mark_new_allocated_block(block); memory_algo->priv_mark_new_allocated_block(new_block); memory_algo->priv_deallocate(memory_algo->priv_get_user_buffer(new_block)); return true; } private: static multiallocation_iterator priv_allocate_many ( MemoryAlgorithm *memory_algo , const std::size_t *elem_sizes , std::size_t n_elements , std::size_t sizeof_element) { //Note: sizeof_element == 0 indicates that we want to //allocate n_elements of the same size "*elem_sizes" //Calculate the total size of all requests std::size_t total_request_units = 0; std::size_t elem_units = 0; const std::size_t ptr_size_units = memory_algo->priv_get_total_units(sizeof(multi_allocation_next_ptr)); if(!sizeof_element){ elem_units = memory_algo->priv_get_total_units(*elem_sizes); elem_units = ptr_size_units > elem_units ? ptr_size_units : elem_units; total_request_units = n_elements*elem_units; } else{ for(std::size_t i = 0; i < n_elements; ++i){ elem_units = memory_algo->priv_get_total_units(elem_sizes[i]*sizeof_element); elem_units = ptr_size_units > elem_units ? ptr_size_units : elem_units; total_request_units += elem_units; } } multi_allocation_next_ptr first = 0, previous = 0; std::size_t low_idx = 0; while(low_idx < n_elements){ std::size_t total_bytes = total_request_units*Alignment - AllocatedCtrlBytes + UsableByPreviousChunk; std::size_t min_allocation = (!sizeof_element) ? elem_units : memory_algo->priv_get_total_units(elem_sizes[low_idx]*sizeof_element); min_allocation = min_allocation*Alignment - AllocatedCtrlBytes + UsableByPreviousChunk; std::size_t received_size; std::pair
ret = memory_algo->priv_allocate (allocate_new, min_allocation, total_bytes, received_size, 0); if(!ret.first){ break; } block_ctrl *block = memory_algo->priv_get_block(ret.first); std::size_t received_units = block->m_size; char *block_address = (char*)block; std::size_t total_used_units = 0; // block_ctrl *prev_block = 0; while(total_used_units < received_units){ if(sizeof_element){ elem_units = memory_algo->priv_get_total_units(elem_sizes[low_idx]*sizeof_element); elem_units = ptr_size_units > elem_units ? ptr_size_units : elem_units; } if(total_used_units + elem_units > received_units) break; total_request_units -= elem_units; //This is the position where the new block must be created // if(prev_block) // memory_algo->priv_mark_new_allocated_block(prev_block); block_ctrl *new_block = (block_ctrl *)(block_address); // block_ctrl *new_block = new(block_address)block_ctrl; assert_alignment(new_block); //The last block should take all the remaining space if((low_idx + 1) == n_elements || (total_used_units + elem_units + ((!sizeof_element) ? elem_units : memory_algo->priv_get_total_units(elem_sizes[low_idx+1]*sizeof_element)) ) > received_units){ //By default, the new block will use the rest of the buffer new_block->m_size = received_units - total_used_units; memory_algo->priv_mark_new_allocated_block(new_block); //If the remaining units are bigger than needed and we can //split it obtaining a new free memory block do it. if((received_units - total_used_units) >= (elem_units + MemoryAlgorithm::BlockCtrlUnits)){ std::size_t shrunk_received; std::size_t shrunk_request = elem_units*Alignment - AllocatedCtrlBytes + UsableByPreviousChunk; bool shrink_ok = shrink (memory_algo ,memory_algo->priv_get_user_buffer(new_block) ,shrunk_request ,shrunk_request ,shrunk_received); (void)shrink_ok; //Shrink must always succeed with passed parameters BOOST_ASSERT(shrink_ok); //Some sanity checks BOOST_ASSERT(shrunk_request == shrunk_received); BOOST_ASSERT(elem_units == ((shrunk_request-UsableByPreviousChunk)/Alignment + AllocatedCtrlUnits)); //"new_block->m_size" must have been reduced to elem_units by "shrink" BOOST_ASSERT(new_block->m_size == elem_units); //Now update the total received units with the reduction received_units = elem_units + total_used_units; } } else{ new_block->m_size = elem_units; memory_algo->priv_mark_new_allocated_block(new_block); } block_address += new_block->m_size*Alignment; total_used_units += new_block->m_size; //Check we have enough room to overwrite the intrusive pointer assert((new_block->m_size*Alignment - AllocatedCtrlUnits) >= sizeof(multi_allocation_next_t)); multi_allocation_next_ptr p = new(memory_algo->priv_get_user_buffer(new_block))multi_allocation_next_t(0); if(!first){ first = p; } else{ previous->next_ = p; } previous = p; ++low_idx; //prev_block = new_block; } //Sanity check BOOST_ASSERT(total_used_units == received_units); } if(low_idx != n_elements){ while(first){ multi_allocation_next_ptr prev = first; first = first->next_; memory_algo->priv_deallocate(detail::get_pointer(prev)); } return multiallocation_iterator(); } else{ return multiallocation_iterator(first); } } }; } //namespace detail { } //namespace interprocess { } //namespace boost { #include
#endif //#ifndef BOOST_INTERPROCESS_DETAIL_MEM_ALGO_COMMON_HPP
mem_algo_common.hpp
Page URL
File URL
Prev 1/2
Next
Download
( 25 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.