DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's stl_tree file. Modified by Ion Gaztanaga 2005. // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ #ifndef BOOST_INTERPROCESS_TREE_HPP #define BOOST_INTERPROCESS_TREE_HPP #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace interprocess { namespace detail { template
struct value_compare_impl : public KeyCompare { typedef Value value_type; typedef KeyCompare key_compare; typedef KeyOfValue key_of_value; typedef Key key_type; value_compare_impl(key_compare kcomp) : key_compare(kcomp) {} const key_compare &key_comp() const { return static_cast
(*this); } key_compare &key_comp() { return static_cast
(*this); } template
bool operator()(const A &a, const B &b) const { return key_compare::operator()(KeyOfValue()(a), KeyOfValue()(b)); } }; template
struct rbtree_node : public bi::make_set_base_hook < bi::void_pointer
, bi::link_mode
, bi::optimize_size
>::type { typedef typename bi::make_set_base_hook < bi::void_pointer
, bi::link_mode
, bi::optimize_size
>::type hook_type; typedef T value_type; typedef rbtree_node
node_type; #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
rbtree_node(const Convertible &conv) : m_data(conv){} #else template
rbtree_node(Convertible &&conv) : m_data(forward
(conv)){} #endif rbtree_node &operator=(const rbtree_node &other) { do_assign(other.m_data); return *this; } T m_data; private: template
void do_assign(const std::pair
&p) { const_cast
(m_data.first) = p.first; m_data.second = p.second; } template
void do_assign(const V &v) { m_data = v; } public: #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
static void construct(node_type *ptr, const Convertible &value) { new(ptr) node_type(value); } template
static void construct(node_type *ptr, const detail::moved_object
> &value) { //std::pair is not movable so we define our own type and overwrite it typedef detail::pair
hack_pair_t; typedef rbtree_node
hack_node_t; new((void*)ptr) hack_node_t(value); } #else template
static void construct(node_type *ptr, Convertible &&value) { new(ptr) node_type(forward
(value)); } template
static void construct(node_type *ptr, std::pair
&&value) { //std::pair is not movable so we define our own type and overwrite it typedef detail::pair
hack_pair_t; typedef rbtree_node
hack_node_t; new((void*)ptr) hack_node_t(value); } #endif }; }//namespace detail { template
struct has_own_construct_from_it < boost::interprocess::detail::rbtree_node
> { static const bool value = true; }; namespace detail { template
struct intrusive_rbtree_type { typedef typename A::value_type value_type; typedef typename detail::pointer_to_other
::type void_pointer; typedef typename detail::rbtree_node
node_type; typedef node_compare
node_compare_type; typedef typename bi::make_rbtree
,bi::base_hook
,bi::constant_time_size
,bi::size_type
>::type container_type; typedef container_type type ; }; } //namespace detail { namespace detail { template
class rbtree : protected detail::node_alloc_holder
>::type > { typedef typename detail::intrusive_rbtree_type
>::type Icont; typedef detail::node_alloc_holder
AllocHolder; typedef typename AllocHolder::NodePtr NodePtr; typedef rbtree < Key, Value, KeyOfValue , KeyCompare, A> ThisType; typedef typename AllocHolder::NodeAlloc NodeAlloc; typedef typename AllocHolder::ValAlloc ValAlloc; typedef typename AllocHolder::Node Node; typedef typename Icont::iterator iiterator; typedef typename Icont::const_iterator iconst_iterator; typedef detail::allocator_destroyer
Destroyer; typedef typename AllocHolder::allocator_v1 allocator_v1; typedef typename AllocHolder::allocator_v2 allocator_v2; typedef typename AllocHolder::alloc_version alloc_version; class RecyclingCloner; friend class RecyclingCloner; class RecyclingCloner { public: RecyclingCloner(AllocHolder &holder, Icont &irbtree) : m_holder(holder), m_icont(irbtree) {} NodePtr operator()(const Node &other) const { // if(!m_icont.empty()){ if(NodePtr p = m_icont.unlink_leftmost_without_rebalance()){ //First recycle a node (this can't throw) //NodePtr p = m_icont.unlink_leftmost_without_rebalance(); try{ //This can throw *p = other; return p; } catch(...){ //If there is an exception destroy the whole source m_holder.destroy_node(p); while((p = m_icont.unlink_leftmost_without_rebalance())){ m_holder.destroy_node(p); } throw; } } else{ return m_holder.create_node(other); } } AllocHolder &m_holder; Icont &m_icont; }; public: typedef Key key_type; typedef Value value_type; typedef A allocator_type; typedef KeyCompare key_compare; typedef value_compare_impl< Key, Value , KeyCompare, KeyOfValue> value_compare; typedef typename A::pointer pointer; typedef typename A::const_pointer const_pointer; typedef typename A::reference reference; typedef typename A::const_reference const_reference; typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef difference_type rbtree_difference_type; typedef pointer rbtree_pointer; typedef const_pointer rbtree_const_pointer; typedef reference rbtree_reference; typedef const_reference rbtree_const_reference; typedef NodeAlloc stored_allocator_type; private: template
struct key_node_compare : private KeyValueCompare { key_node_compare(KeyValueCompare comp) : KeyValueCompare(comp) {} template
bool operator()(const Node &n, const KeyType &k) const { return KeyValueCompare::operator()(n.m_data, k); } template
bool operator()(const KeyType &k, const Node &n) const { return KeyValueCompare::operator()(k, n.m_data); } }; typedef key_node_compare
KeyNodeCompare; public: //rbtree const_iterator class const_iterator : public std::iterator < std::bidirectional_iterator_tag , value_type , rbtree_difference_type , rbtree_const_pointer , rbtree_const_reference> { protected: typedef typename Icont::iterator iiterator; iiterator m_it; explicit const_iterator(iiterator it) : m_it(it){} void prot_incr() { ++m_it; } void prot_decr() { --m_it; } private: iiterator get() { return this->m_it; } public: friend class rbtree
; typedef rbtree_difference_type difference_type; //Constructors const_iterator() : m_it() {} //Pointer like operators const_reference operator*() const { return m_it->m_data; } const_pointer operator->() const { return const_pointer(&m_it->m_data); } //Increment / Decrement const_iterator& operator++() { prot_incr(); return *this; } const_iterator operator++(int) { iiterator tmp = m_it; ++*this; return const_iterator(tmp); } const_iterator& operator--() { prot_decr(); return *this; } const_iterator operator--(int) { iiterator tmp = m_it; --*this; return const_iterator(tmp); } //Comparison operators bool operator== (const const_iterator& r) const { return m_it == r.m_it; } bool operator!= (const const_iterator& r) const { return m_it != r.m_it; } }; //rbtree iterator class iterator : public const_iterator { private: explicit iterator(iiterator it) : const_iterator(it) {} iiterator get() { return this->m_it; } public: friend class rbtree
; typedef rbtree_pointer pointer; typedef rbtree_reference reference; //Constructors iterator(){} //Pointer like operators reference operator*() const { return this->m_it->m_data; } pointer operator->() const { return pointer(&this->m_it->m_data); } //Increment / Decrement iterator& operator++() { this->prot_incr(); return *this; } iterator operator++(int) { iiterator tmp = this->m_it; ++*this; return iterator(tmp); } iterator& operator--() { this->prot_decr(); return *this; } iterator operator--(int) { iterator tmp = *this; --*this; return tmp; } }; typedef std::reverse_iterator
reverse_iterator; typedef std::reverse_iterator
const_reverse_iterator; rbtree(const key_compare& comp = key_compare(), const allocator_type& a = allocator_type()) : AllocHolder(a, comp) {} template
rbtree(InputIterator first, InputIterator last, const key_compare& comp, const allocator_type& a, bool unique_insertion) : AllocHolder(a, comp) { typedef typename std::iterator_traits
::iterator_category ItCat; priv_create_and_insert_nodes(first, last, unique_insertion, alloc_version(), ItCat()); } rbtree(const rbtree& x) : AllocHolder(x, x.key_comp()) { this->icont().clone_from (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc())); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE rbtree(const detail::moved_object
& x) : AllocHolder(x.get(), x.get().key_comp()) { this->swap(x.get()); } #else rbtree(rbtree &&x) : AllocHolder(x, x.key_comp()) { this->swap(x); } #endif ~rbtree() { this->clear(); } rbtree& operator=(const rbtree& x) { if (this != &x) { //Transfer all the nodes to a temporary tree //If anything goes wrong, all the nodes will be destroyed //automatically Icont other_tree(this->icont().value_comp()); other_tree.swap(this->icont()); //Now recreate the source tree reusing nodes stored by other_tree this->icont().clone_from (x.icont() , RecyclingCloner(*this, other_tree) //, AllocHolder::cloner(*this) , Destroyer(this->node_alloc())); //If there are remaining nodes, destroy them NodePtr p; while((p = other_tree.unlink_leftmost_without_rebalance())){ AllocHolder::destroy_node(p); } } return *this; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE rbtree& operator=(const detail::moved_object
& mx) { this->clear(); this->swap(mx.get()); return *this; } #else rbtree& operator=(rbtree &&mx) { this->clear(); this->swap(mx); return *this; } #endif public: // accessors: value_compare value_comp() const { return this->icont().value_comp().value_comp(); } key_compare key_comp() const { return this->icont().value_comp().value_comp().key_comp(); } allocator_type get_allocator() const { return allocator_type(this->node_alloc()); } const stored_allocator_type &get_stored_allocator() const { return this->node_alloc(); } stored_allocator_type &get_stored_allocator() { return this->node_alloc(); } iterator begin() { return iterator(this->icont().begin()); } const_iterator begin() const { return const_iterator(this->non_const_icont().begin()); } iterator end() { return iterator(this->icont().end()); } const_iterator end() const { return const_iterator(this->non_const_icont().end()); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } bool empty() const { return !this->size(); } size_type size() const { return this->icont().size(); } size_type max_size() const { return AllocHolder::max_size(); } void swap(ThisType& x) { AllocHolder::swap(x); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
& mt) { this->swap(mt.get()); } #else void swap(rbtree &&mt) { this->swap(mt); } #endif public: typedef typename Icont::insert_commit_data insert_commit_data; // insert/erase std::pair
insert_unique_check (const key_type& key, insert_commit_data &data) { std::pair
ret = this->icont().insert_unique_check(key, KeyNodeCompare(value_comp()), data); return std::pair
(iterator(ret.first), ret.second); } std::pair
insert_unique_check (const_iterator hint, const key_type& key, insert_commit_data &data) { std::pair
ret = this->icont().insert_unique_check(hint.get(), key, KeyNodeCompare(value_comp()), data); return std::pair
(iterator(ret.first), ret.second); } iterator insert_unique_commit(const value_type& v, insert_commit_data &data) { NodePtr tmp = AllocHolder::create_node(v); iiterator it(this->icont().insert_unique_commit(*tmp, data)); return iterator(it); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
iterator insert_unique_commit (const detail::moved_object
& mv, insert_commit_data &data) { NodePtr tmp = AllocHolder::create_node(mv); iiterator it(this->icont().insert_unique_commit(*tmp, data)); return iterator(it); } #else template
iterator insert_unique_commit (MovableConvertible && mv, insert_commit_data &data) { NodePtr tmp = AllocHolder::create_node(forward
(mv)); iiterator it(this->icont().insert_unique_commit(*tmp, data)); return iterator(it); } #endif std::pair
insert_unique(const value_type& v) { insert_commit_data data; std::pair
ret = this->insert_unique_check(KeyOfValue()(v), data); if(!ret.second) return ret; return std::pair
(this->insert_unique_commit(v, data), true); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
std::pair
insert_unique (const detail::moved_object
& mv) { insert_commit_data data; std::pair
ret = this->insert_unique_check(KeyOfValue()(mv.get()), data); if(!ret.second) return ret; return std::pair
(this->insert_unique_commit(mv, data), true); } #else template
std::pair
insert_unique(MovableConvertible &&mv) { insert_commit_data data; std::pair
ret = this->insert_unique_check(KeyOfValue()(mv), data); if(!ret.second) return ret; return std::pair
(this->insert_unique_commit(forward
(mv), data), true); } #endif iterator insert_unique(const_iterator hint, const value_type& v) { insert_commit_data data; std::pair
ret = this->insert_unique_check(hint, KeyOfValue()(v), data); if(!ret.second) return ret.first; return this->insert_unique_commit(v, data); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
iterator insert_unique (const_iterator hint, const detail::moved_object
&mv) { insert_commit_data data; std::pair
ret = this->insert_unique_check(hint, KeyOfValue()(mv.get()), data); if(!ret.second) return ret.first; return this->insert_unique_commit(mv, data); } #else template
iterator insert_unique (const_iterator hint, MovableConvertible &&mv) { insert_commit_data data; std::pair
ret = this->insert_unique_check(hint, KeyOfValue()(mv), data); if(!ret.second) return ret.first; return this->insert_unique_commit(forward
(mv), data); } #endif template
void insert_unique(InputIterator first, InputIterator last) { if(this->empty()){ //Insert with end hint, to achieve linear //complexity if [first, last) is ordered iterator end(this->end()); for( ; first != last; ++first) this->insert_unique(end, *first); } else{ for( ; first != last; ++first) this->insert_unique(*first); } } iterator insert_equal(const value_type& v) { NodePtr p(AllocHolder::create_node(v)); return iterator(this->icont().insert_equal(this->icont().end(), *p)); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
iterator insert_equal(const detail::moved_object
&mv) { NodePtr p(AllocHolder::create_node(mv)); return iterator(this->icont().insert_equal(this->icont().end(), *p)); } #else template
iterator insert_equal(MovableConvertible &&mv) { NodePtr p(AllocHolder::create_node(forward
(mv))); return iterator(this->icont().insert_equal(this->icont().end(), *p)); } #endif iterator insert_equal(const_iterator hint, const value_type& v) { NodePtr p(AllocHolder::create_node(v)); return iterator(this->icont().insert_equal(hint.get(), *p)); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
iterator insert_equal(const_iterator hint, const detail::moved_object
&mv) { NodePtr p(AllocHolder::create_node(mv)); return iterator(this->icont().insert_equal(hint.get(), *p)); } #else template
iterator insert_equal(const_iterator hint, MovableConvertible &&mv) { NodePtr p(AllocHolder::create_node(move(mv))); return iterator(this->icont().insert_equal(hint.get(), *p)); } #endif template
void insert_equal(InputIterator first, InputIterator last) { //Insert with end hint, to achieve linear //complexity if [first, last) is ordered iterator end(this->end()); for( ; first != last; ++first) this->insert_equal(end, *first); } iterator erase(const_iterator position) { return iterator(this->icont().erase_and_dispose(position.get(), Destroyer(this->node_alloc()))); } size_type erase(const key_type& k) { return AllocHolder::erase_key(k, KeyNodeCompare(value_comp()), alloc_version()); } iterator erase(const_iterator first, const_iterator last) { return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); } void clear() { AllocHolder::clear(alloc_version()); } // set operations: iterator find(const key_type& k) { return iterator(this->icont().find(k, KeyNodeCompare(value_comp()))); } const_iterator find(const key_type& k) const { return const_iterator(this->non_const_icont().find(k, KeyNodeCompare(value_comp()))); } size_type count(const key_type& k) const { return size_type(this->icont().count(k, KeyNodeCompare(value_comp()))); } iterator lower_bound(const key_type& k) { return iterator(this->icont().lower_bound(k, KeyNodeCompare(value_comp()))); } const_iterator lower_bound(const key_type& k) const { return const_iterator(this->non_const_icont().lower_bound(k, KeyNodeCompare(value_comp()))); } iterator upper_bound(const key_type& k) { return iterator(this->icont().upper_bound(k, KeyNodeCompare(value_comp()))); } const_iterator upper_bound(const key_type& k) const { return const_iterator(this->non_const_icont().upper_bound(k, KeyNodeCompare(value_comp()))); } std::pair
equal_range(const key_type& k) { std::pair
ret = this->icont().equal_range(k, KeyNodeCompare(value_comp())); return std::pair
(iterator(ret.first), iterator(ret.second)); } std::pair
equal_range(const key_type& k) const { std::pair
ret = this->non_const_icont().equal_range(k, KeyNodeCompare(value_comp())); return std::pair
(const_iterator(ret.first), const_iterator(ret.second)); } private: //Iterator range version template
void priv_create_and_insert_nodes (InpIterator beg, InpIterator end, bool unique) { typedef typename std::iterator_traits
::iterator_category ItCat; priv_create_and_insert_nodes(beg, end, unique, alloc_version(), ItCat()); } template
void priv_create_and_insert_nodes (InpIterator beg, InpIterator end, bool unique, allocator_v1, std::input_iterator_tag) { if(unique){ for (; beg != end; ++beg){ this->insert_unique(*beg); } } else{ for (; beg != end; ++beg){ this->insert_equal(*beg); } } } template
void priv_create_and_insert_nodes (InpIterator beg, InpIterator end, bool unique, allocator_v2, std::input_iterator_tag) { //Just forward to the default one priv_create_and_insert_nodes(beg, end, unique, allocator_v1(), std::input_iterator_tag()); } class insertion_functor; friend class insertion_functor; class insertion_functor { Icont &icont_; typename Icont::iterator pos_; public: insertion_functor(Icont &icont) : icont_(icont) {} void operator()(Node &n) { this->icont_.insert_equal(this->icont_.end(), n); } }; template
void priv_create_and_insert_nodes (FwdIterator beg, FwdIterator end, bool unique, allocator_v2, std::forward_iterator_tag) { if(unique){ priv_create_and_insert_nodes(beg, end, unique, allocator_v2(), std::input_iterator_tag()); } else{ //Optimized allocation and construction this->allocate_many_and_construct (beg, std::distance(beg, end), insertion_functor(this->icont())); } } }; template
inline bool operator==(const rbtree
& x, const rbtree
& y) { return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin()); } template
inline bool operator<(const rbtree
& x, const rbtree
& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template
inline bool operator!=(const rbtree
& x, const rbtree
& y) { return !(x == y); } template
inline bool operator>(const rbtree
& x, const rbtree
& y) { return y < x; } template
inline bool operator<=(const rbtree
& x, const rbtree
& y) { return !(y < x); } template
inline bool operator>=(const rbtree
& x, const rbtree
& y) { return !(x < y); } template
inline void swap(rbtree
& x, rbtree
& y) { x.swap(y); } } //namespace detail { //!This class is movable template
struct is_movable
> { enum { value = true }; }; //!This class is movable template
struct is_movable
> { enum { value = true }; }; //!This class is movable /* template
struct is_movable
> { enum { value = true }; }; */ //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value && has_trivial_destructor
::value }; }; } //namespace interprocess { } //namespace boost { #include
#endif //BOOST_INTERPROCESS_TREE_HPP
tree.hpp
Page URL
File URL
Prev
3/3 Next
Download
( 30 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.