DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_VECTOR_SPARSE_ #define _BOOST_UBLAS_VECTOR_SPARSE_ #include
#include
#include
#if BOOST_UBLAS_TYPE_CHECK #include
#endif // Iterators based on ideas of Jeremy Siek namespace boost { namespace numeric { namespace ublas { #ifdef BOOST_UBLAS_STRICT_VECTOR_SPARSE template
class sparse_vector_element: public container_reference
{ public: typedef V vector_type; typedef typename V::size_type size_type; typedef typename V::value_type value_type; typedef const value_type &const_reference; typedef value_type *pointer; private: // Proxied element operations void get_d () const { pointer p = (*this) ().find_element (i_); if (p) d_ = *p; else d_ = value_type/*zero*/(); } void set (const value_type &s) const { pointer p = (*this) ().find_element (i_); if (!p) (*this) ().insert_element (i_, s); else *p = s; } public: // Construction and destruction sparse_vector_element (vector_type &v, size_type i): container_reference
(v), i_ (i) { } BOOST_UBLAS_INLINE sparse_vector_element (const sparse_vector_element &p): container_reference
(p), i_ (p.i_) {} BOOST_UBLAS_INLINE ~sparse_vector_element () { } // Assignment BOOST_UBLAS_INLINE sparse_vector_element &operator = (const sparse_vector_element &p) { // Overide the implict copy assignment p.get_d (); set (p.d_); return *this; } template
BOOST_UBLAS_INLINE sparse_vector_element &operator = (const D &d) { set (d); return *this; } template
BOOST_UBLAS_INLINE sparse_vector_element &operator += (const D &d) { get_d (); d_ += d; set (d_); return *this; } template
BOOST_UBLAS_INLINE sparse_vector_element &operator -= (const D &d) { get_d (); d_ -= d; set (d_); return *this; } template
BOOST_UBLAS_INLINE sparse_vector_element &operator *= (const D &d) { get_d (); d_ *= d; set (d_); return *this; } template
BOOST_UBLAS_INLINE sparse_vector_element &operator /= (const D &d) { get_d (); d_ /= d; set (d_); return *this; } // Comparison template
BOOST_UBLAS_INLINE bool operator == (const D &d) const { get_d (); return d_ == d; } template
BOOST_UBLAS_INLINE bool operator != (const D &d) const { get_d (); return d_ != d; } // Conversion - weak link in proxy as d_ is not a perfect alias for the element BOOST_UBLAS_INLINE operator const_reference () const { get_d (); return d_; } // Conversion to reference - may be invalidated BOOST_UBLAS_INLINE value_type& ref () const { const pointer p = (*this) ().find_element (i_); if (!p) return (*this) ().insert_element (i_, value_type/*zero*/()); else return *p; } private: size_type i_; mutable value_type d_; }; /* * Generalise explicit reference access */ namespace detail { template
struct element_reference { typedef R& reference; static reference get_reference (reference r) { return r; } }; template
struct element_reference
> { typedef typename V::value_type& reference; static reference get_reference (const sparse_vector_element
& sve) { return sve.ref (); } }; } template
typename detail::element_reference
::reference ref (VER& ver) { return detail::element_reference
::get_reference (ver); } template
typename detail::element_reference
::reference ref (const VER& ver) { return detail::element_reference
::get_reference (ver); } template
struct type_traits
> { typedef typename V::value_type element_type; typedef type_traits
> self_type; typedef typename type_traits
::value_type value_type; typedef typename type_traits
::const_reference const_reference; typedef sparse_vector_element
reference; typedef typename type_traits
::real_type real_type; typedef typename type_traits
::precision_type precision_type; static const unsigned plus_complexity = type_traits
::plus_complexity; static const unsigned multiplies_complexity = type_traits
::multiplies_complexity; static BOOST_UBLAS_INLINE real_type real (const_reference t) { return type_traits
::real (t); } static BOOST_UBLAS_INLINE real_type imag (const_reference t) { return type_traits
::imag (t); } static BOOST_UBLAS_INLINE value_type conj (const_reference t) { return type_traits
::conj (t); } static BOOST_UBLAS_INLINE real_type type_abs (const_reference t) { return type_traits
::type_abs (t); } static BOOST_UBLAS_INLINE value_type type_sqrt (const_reference t) { return type_traits
::type_sqrt (t); } static BOOST_UBLAS_INLINE real_type norm_1 (const_reference t) { return type_traits
::norm_1 (t); } static BOOST_UBLAS_INLINE real_type norm_2 (const_reference t) { return type_traits
::norm_2 (t); } static BOOST_UBLAS_INLINE real_type norm_inf (const_reference t) { return type_traits
::norm_inf (t); } static BOOST_UBLAS_INLINE bool equals (const_reference t1, const_reference t2) { return type_traits
::equals (t1, t2); } }; template
struct promote_traits
, T2> { typedef typename promote_traits
::value_type, T2>::promote_type promote_type; }; template
struct promote_traits
> { typedef typename promote_traits
::value_type>::promote_type promote_type; }; template
struct promote_traits
, sparse_vector_element
> { typedef typename promote_traits
::value_type, typename sparse_vector_element
::value_type>::promote_type promote_type; }; #endif // Index map based sparse vector class template
class mapped_vector: public vector_container
> { typedef T &true_reference; typedef T *pointer; typedef const T *const_pointer; typedef mapped_vector
self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_container
::operator (); #endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef A array_type; typedef const value_type &const_reference; #ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE typedef typename detail::map_traits
::reference reference; #else typedef sparse_vector_element
reference; #endif typedef const vector_reference
const_closure_type; typedef vector_reference
closure_type; typedef self_type vector_temporary_type; typedef sparse_tag storage_category; // Construction and destruction BOOST_UBLAS_INLINE mapped_vector (): vector_container
(), size_ (0), data_ () {} BOOST_UBLAS_INLINE mapped_vector (size_type size, size_type non_zeros = 0): vector_container
(), size_ (size), data_ () { detail::map_reserve (data(), restrict_capacity (non_zeros)); } BOOST_UBLAS_INLINE mapped_vector (const mapped_vector &v): vector_container
(), size_ (v.size_), data_ (v.data_) {} template
BOOST_UBLAS_INLINE mapped_vector (const vector_expression
&ae, size_type non_zeros = 0): vector_container
(), size_ (ae ().size ()), data_ () { detail::map_reserve (data(), restrict_capacity (non_zeros)); vector_assign
(*this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size () const { return size_; } BOOST_UBLAS_INLINE size_type nnz_capacity () const { return detail::map_capacity (data ()); } BOOST_UBLAS_INLINE size_type nnz () const { return data (). size (); } // Storage accessors BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing private: BOOST_UBLAS_INLINE size_type restrict_capacity (size_type non_zeros) const { non_zeros = (std::min) (non_zeros, size_); return non_zeros; } public: BOOST_UBLAS_INLINE void resize (size_type size, bool preserve = true) { size_ = size; if (preserve) { data ().erase (data ().lower_bound(size_), data ().end()); } else { data ().clear (); } } // Reserving BOOST_UBLAS_INLINE void reserve (size_type non_zeros = 0, bool preserve = true) { detail::map_reserve (data (), restrict_capacity (non_zeros)); } // Element support BOOST_UBLAS_INLINE pointer find_element (size_type i) { return const_cast
(const_cast
(*this).find_element (i)); } BOOST_UBLAS_INLINE const_pointer find_element (size_type i) const { const_subiterator_type it (data ().find (i)); if (it == data ().end ()) return 0; BOOST_UBLAS_CHECK ((*it).first == i, internal_logic ()); // broken map return &(*it).second; } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { BOOST_UBLAS_CHECK (i < size_, bad_index ()); const_subiterator_type it (data ().find (i)); if (it == data ().end ()) return zero_; BOOST_UBLAS_CHECK ((*it).first == i, internal_logic ()); // broken map return (*it).second; } BOOST_UBLAS_INLINE true_reference ref (size_type i) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); std::pair
ii (data ().insert (typename array_type::value_type (i, value_type/*zero*/()))); BOOST_UBLAS_CHECK ((ii.first)->first == i, internal_logic ()); // broken map return (ii.first)->second; } BOOST_UBLAS_INLINE reference operator () (size_type i) { #ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE return ref (i); #else BOOST_UBLAS_CHECK (i < size_, bad_index ()); return reference (*this, i); #endif } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } // Element assignment BOOST_UBLAS_INLINE true_reference insert_element (size_type i, const_reference t) { std::pair
ii = data ().insert (typename array_type::value_type (i, t)); BOOST_UBLAS_CHECK (ii.second, bad_index ()); // duplicate element BOOST_UBLAS_CHECK ((ii.first)->first == i, internal_logic ()); // broken map if (!ii.second) // existing element (ii.first)->second = t; return (ii.first)->second; } BOOST_UBLAS_INLINE void erase_element (size_type i) { subiterator_type it = data ().find (i); if (it == data ().end ()) return; data ().erase (it); } // Zeroing BOOST_UBLAS_INLINE void clear () { data ().clear (); } // Assignment BOOST_UBLAS_INLINE mapped_vector &operator = (const mapped_vector &v) { if (this != &v) { size_ = v.size_; data () = v.data (); } return *this; } template
// Container assignment without temporary BOOST_UBLAS_INLINE mapped_vector &operator = (const vector_container
&v) { resize (v ().size (), false); assign (v); return *this; } BOOST_UBLAS_INLINE mapped_vector &assign_temporary (mapped_vector &v) { swap (v); return *this; } template
BOOST_UBLAS_INLINE mapped_vector &operator = (const vector_expression
&ae) { self_type temporary (ae, detail::map_capacity (data())); return assign_temporary (temporary); } template
BOOST_UBLAS_INLINE mapped_vector &assign (const vector_expression
&ae) { vector_assign
(*this, ae); return *this; } // Computed assignment template
BOOST_UBLAS_INLINE mapped_vector &operator += (const vector_expression
&ae) { self_type temporary (*this + ae, detail::map_capacity (data())); return assign_temporary (temporary); } template
// Container assignment without temporary BOOST_UBLAS_INLINE mapped_vector &operator += (const vector_container
&v) { plus_assign (v); return *this; } template
BOOST_UBLAS_INLINE mapped_vector &plus_assign (const vector_expression
&ae) { vector_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE mapped_vector &operator -= (const vector_expression
&ae) { self_type temporary (*this - ae, detail::map_capacity (data())); return assign_temporary (temporary); } template
// Container assignment without temporary BOOST_UBLAS_INLINE mapped_vector &operator -= (const vector_container
&v) { minus_assign (v); return *this; } template
BOOST_UBLAS_INLINE mapped_vector &minus_assign (const vector_expression
&ae) { vector_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE mapped_vector &operator *= (const AT &at) { vector_assign_scalar
(*this, at); return *this; } template
BOOST_UBLAS_INLINE mapped_vector &operator /= (const AT &at) { vector_assign_scalar
(*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (mapped_vector &v) { if (this != &v) { std::swap (size_, v.size_); data ().swap (v.data ()); } } BOOST_UBLAS_INLINE friend void swap (mapped_vector &v1, mapped_vector &v2) { v1.swap (v2); } // Iterator types private: // Use storage iterator typedef typename A::const_iterator const_subiterator_type; typedef typename A::iterator subiterator_type; BOOST_UBLAS_INLINE true_reference at_element (size_type i) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); subiterator_type it (data ().find (i)); BOOST_UBLAS_CHECK (it != data ().end(), bad_index ()); BOOST_UBLAS_CHECK ((*it).first == i, internal_logic ()); // broken map return it->second; } public: class const_iterator; class iterator; // Element lookup // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. const_iterator find (size_type i) const { return const_iterator (*this, data ().lower_bound (i)); } // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. iterator find (size_type i) { return iterator (*this, data ().lower_bound (i)); } class const_iterator: public container_const_reference
, public bidirectional_iterator_base
{ public: typedef typename mapped_vector::value_type value_type; typedef typename mapped_vector::difference_type difference_type; typedef typename mapped_vector::const_reference reference; typedef const typename mapped_vector::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference
(), it_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &v, const const_subiterator_type &it): container_const_reference
(v), it_ (it) {} BOOST_UBLAS_INLINE const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here container_const_reference
(it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it_; return *this; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*it_).second; } // Index BOOST_UBLAS_INLINE size_type index () const { BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ()); BOOST_UBLAS_CHECK ((*it_).first < (*this) ().size (), bad_index ()); return (*it_).first; } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference
::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } private: const_subiterator_type it_; }; BOOST_UBLAS_INLINE const_iterator begin () const { return const_iterator (*this, data ().begin ()); } BOOST_UBLAS_INLINE const_iterator end () const { return const_iterator (*this, data ().end ()); } class iterator: public container_reference
, public bidirectional_iterator_base
{ public: typedef typename mapped_vector::value_type value_type; typedef typename mapped_vector::difference_type difference_type; typedef typename mapped_vector::true_reference reference; typedef typename mapped_vector::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference
(), it_ () {} BOOST_UBLAS_INLINE iterator (self_type &v, const subiterator_type &it): container_reference
(v), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it_; return *this; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*it_).second; } // Index BOOST_UBLAS_INLINE size_type index () const { BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ()); BOOST_UBLAS_CHECK ((*it_).first < (*this) ().size (), bad_index ()); return (*it_).first; } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference
::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } private: subiterator_type it_; friend class const_iterator; }; BOOST_UBLAS_INLINE iterator begin () { return iterator (*this, data ().begin ()); } BOOST_UBLAS_INLINE iterator end () { return iterator (*this, data ().end ()); } // Reverse iterator typedef reverse_iterator_base
const_reverse_iterator; typedef reverse_iterator_base
reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } BOOST_UBLAS_INLINE reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } // Serialization template
void serialize(Archive & ar, const unsigned int /* file_version */){ serialization::collection_size_type s (size_); ar & serialization::make_nvp("size",s); if (Archive::is_loading::value) { size_ = s; } ar & serialization::make_nvp("data", data_); } private: size_type size_; array_type data_; static const value_type zero_; }; template
const typename mapped_vector
::value_type mapped_vector
::zero_ = value_type/*zero*/(); // Compressed array based sparse vector class // Thanks to Kresimir Fresl for extending this to cover different index bases. template
class compressed_vector: public vector_container
> { typedef T &true_reference; typedef T *pointer; typedef const T *const_pointer; typedef compressed_vector
self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_container
::operator (); #endif // ISSUE require type consistency check // is_convertable (IA::size_type, TA::size_type) typedef typename IA::value_type size_type; typedef typename IA::difference_type difference_type; typedef T value_type; typedef const T &const_reference; #ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE typedef T &reference; #else typedef sparse_vector_element
reference; #endif typedef IA index_array_type; typedef TA value_array_type; typedef const vector_reference
const_closure_type; typedef vector_reference
closure_type; typedef self_type vector_temporary_type; typedef sparse_tag storage_category; // Construction and destruction BOOST_UBLAS_INLINE compressed_vector (): vector_container
(), size_ (0), capacity_ (restrict_capacity (0)), filled_ (0), index_data_ (capacity_), value_data_ (capacity_) { storage_invariants (); } explicit BOOST_UBLAS_INLINE compressed_vector (size_type size, size_type non_zeros = 0): vector_container
(), size_ (size), capacity_ (restrict_capacity (non_zeros)), filled_ (0), index_data_ (capacity_), value_data_ (capacity_) { storage_invariants (); } BOOST_UBLAS_INLINE compressed_vector (const compressed_vector &v): vector_container
(), size_ (v.size_), capacity_ (v.capacity_), filled_ (v.filled_), index_data_ (v.index_data_), value_data_ (v.value_data_) { storage_invariants (); } template
BOOST_UBLAS_INLINE compressed_vector (const vector_expression
&ae, size_type non_zeros = 0): vector_container
(), size_ (ae ().size ()), capacity_ (restrict_capacity (non_zeros)), filled_ (0), index_data_ (capacity_), value_data_ (capacity_) { storage_invariants (); vector_assign
(*this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size () const { return size_; } BOOST_UBLAS_INLINE size_type nnz_capacity () const { return capacity_; } BOOST_UBLAS_INLINE size_type nnz () const { return filled_; } // Storage accessors BOOST_UBLAS_INLINE static size_type index_base () { return IB; } BOOST_UBLAS_INLINE typename index_array_type::size_type filled () const { return filled_; } BOOST_UBLAS_INLINE const index_array_type &index_data () const { return index_data_; } BOOST_UBLAS_INLINE const value_array_type &value_data () const { return value_data_; } BOOST_UBLAS_INLINE void set_filled (const typename index_array_type::size_type & filled) { filled_ = filled; storage_invariants (); } BOOST_UBLAS_INLINE index_array_type &index_data () { return index_data_; } BOOST_UBLAS_INLINE value_array_type &value_data () { return value_data_; } // Resizing private: BOOST_UBLAS_INLINE size_type restrict_capacity (size_type non_zeros) const { non_zeros = (std::max) (non_zeros, size_type (1)); non_zeros = (std::min) (non_zeros, size_); return non_zeros; } public: BOOST_UBLAS_INLINE void resize (size_type size, bool preserve = true) { size_ = size; capacity_ = restrict_capacity (capacity_); if (preserve) { index_data_. resize (capacity_, size_type ()); value_data_. resize (capacity_, value_type ()); filled_ = (std::min) (capacity_, filled_); while ((filled_ > 0) && (zero_based(index_data_[filled_ - 1]) >= size)) { --filled_; } } else { index_data_. resize (capacity_); value_data_. resize (capacity_); filled_ = 0; } storage_invariants (); } // Reserving BOOST_UBLAS_INLINE void reserve (size_type non_zeros, bool preserve = true) { capacity_ = restrict_capacity (non_zeros); if (preserve) { index_data_. resize (capacity_, size_type ()); value_data_. resize (capacity_, value_type ()); filled_ = (std::min) (capacity_, filled_); } else { index_data_. resize (capacity_); value_data_. resize (capacity_); filled_ = 0; } storage_invariants (); } // Element support BOOST_UBLAS_INLINE pointer find_element (size_type i) { return const_cast
(const_cast
(*this).find_element (i)); } BOOST_UBLAS_INLINE const_pointer find_element (size_type i) const { const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); if (it == index_data_.begin () + filled_ || *it != k_based (i)) return 0; return &value_data_ [it - index_data_.begin ()]; } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { BOOST_UBLAS_CHECK (i < size_, bad_index ()); const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); if (it == index_data_.begin () + filled_ || *it != k_based (i)) return zero_; return value_data_ [it - index_data_.begin ()]; } BOOST_UBLAS_INLINE true_reference ref (size_type i) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); if (it == index_data_.begin () + filled_ || *it != k_based (i)) return insert_element (i, value_type/*zero*/()); else return value_data_ [it - index_data_.begin ()]; } BOOST_UBLAS_INLINE reference operator () (size_type i) { #ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE return ref (i) ; #else BOOST_UBLAS_CHECK (i < size_, bad_index ()); return reference (*this, i); #endif } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } // Element assignment BOOST_UBLAS_INLINE true_reference insert_element (size_type i, const_reference t) { BOOST_UBLAS_CHECK (!find_element (i), bad_index ()); // duplicate element if (filled_ >= capacity_) reserve (2 * capacity_, true); subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); // ISSUE max_capacity limit due to difference_type typename std::iterator_traits
::difference_type n = it - index_data_.begin (); BOOST_UBLAS_CHECK (filled_ == 0 || filled_ == typename index_array_type::size_type (n) || *it != k_based (i), internal_logic ()); // duplicate found by lower_bound ++ filled_; it = index_data_.begin () + n; std::copy_backward (it, index_data_.begin () + filled_ - 1, index_data_.begin () + filled_); *it = k_based (i); typename value_array_type::iterator itt (value_data_.begin () + n); std::copy_backward (itt, value_data_.begin () + filled_ - 1, value_data_.begin () + filled_); *itt = t; storage_invariants (); return *itt; } BOOST_UBLAS_INLINE void erase_element (size_type i) { subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); typename std::iterator_traits
::difference_type n = it - index_data_.begin (); if (filled_ > typename index_array_type::size_type (n) && *it == k_based (i)) { std::copy (it + 1, index_data_.begin () + filled_, it); typename value_array_type::iterator itt (value_data_.begin () + n); std::copy (itt + 1, value_data_.begin () + filled_, itt); -- filled_; } storage_invariants (); } // Zeroing BOOST_UBLAS_INLINE void clear () { filled_ = 0; storage_invariants (); } // Assignment BOOST_UBLAS_INLINE compressed_vector &operator = (const compressed_vector &v) { if (this != &v) { size_ = v.size_; capacity_ = v.capacity_; filled_ = v.filled_; index_data_ = v.index_data_; value_data_ = v.value_data_; } storage_invariants (); return *this; } template
// Container assignment without temporary BOOST_UBLAS_INLINE compressed_vector &operator = (const vector_container
&v) { resize (v ().size (), false); assign (v); return *this; } BOOST_UBLAS_INLINE compressed_vector &assign_temporary (compressed_vector &v) { swap (v); return *this; } template
BOOST_UBLAS_INLINE compressed_vector &operator = (const vector_expression
&ae) { self_type temporary (ae, capacity_); return assign_temporary (temporary); } template
BOOST_UBLAS_INLINE compressed_vector &assign (const vector_expression
&ae) { vector_assign
(*this, ae); return *this; } // Computed assignment template
BOOST_UBLAS_INLINE compressed_vector &operator += (const vector_expression
&ae) { self_type temporary (*this + ae, capacity_); return assign_temporary (temporary); } template
// Container assignment without temporary BOOST_UBLAS_INLINE compressed_vector &operator += (const vector_container
&v) { plus_assign (v); return *this; } template
BOOST_UBLAS_INLINE compressed_vector &plus_assign (const vector_expression
&ae) { vector_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE compressed_vector &operator -= (const vector_expression
&ae) { self_type temporary (*this - ae, capacity_); return assign_temporary (temporary); } template
// Container assignment without temporary BOOST_UBLAS_INLINE compressed_vector &operator -= (const vector_container
&v) { minus_assign (v); return *this; } template
BOOST_UBLAS_INLINE compressed_vector &minus_assign (const vector_expression
&ae) { vector_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE compressed_vector &operator *= (const AT &at) { vector_assign_scalar
(*this, at); return *this; } template
BOOST_UBLAS_INLINE compressed_vector &operator /= (const AT &at) { vector_assign_scalar
(*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (compressed_vector &v) { if (this != &v) { std::swap (size_, v.size_); std::swap (capacity_, v.capacity_); std::swap (filled_, v.filled_); index_data_.swap (v.index_data_); value_data_.swap (v.value_data_); } storage_invariants (); } BOOST_UBLAS_INLINE friend void swap (compressed_vector &v1, compressed_vector &v2) { v1.swap (v2); } // Back element insertion and erasure BOOST_UBLAS_INLINE void push_back (size_type i, const_reference t) { BOOST_UBLAS_CHECK (filled_ == 0 || index_data_ [filled_ - 1] < k_based (i), external_logic ()); if (filled_ >= capacity_) reserve (2 * capacity_, true); BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ()); index_data_ [filled_] = k_based (i); value_data_ [filled_] = t; ++ filled_; storage_invariants (); } BOOST_UBLAS_INLINE void pop_back () { BOOST_UBLAS_CHECK (filled_ > 0, external_logic ()); -- filled_; storage_invariants (); } // Iterator types private: // Use index array iterator typedef typename IA::const_iterator const_subiterator_type; typedef typename IA::iterator subiterator_type; BOOST_UBLAS_INLINE true_reference at_element (size_type i) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); BOOST_UBLAS_CHECK (it != index_data_.begin () + filled_ && *it == k_based (i), bad_index ()); return value_data_ [it - index_data_.begin ()]; } public: class const_iterator; class iterator; // Element lookup // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. const_iterator find (size_type i) const { return const_iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); } // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. iterator find (size_type i) { return iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); } class const_iterator: public container_const_reference
, public bidirectional_iterator_base
{ public: typedef typename compressed_vector::value_type value_type; typedef typename compressed_vector::difference_type difference_type; typedef typename compressed_vector::const_reference reference; typedef const typename compressed_vector::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference
(), it_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &v, const const_subiterator_type &it): container_const_reference
(v), it_ (it) {} BOOST_UBLAS_INLINE const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here container_const_reference
(it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it_; return *this; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()]; } // Index BOOST_UBLAS_INLINE size_type index () const { BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ()); BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ()); return (*this) ().zero_based (*it_); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference
::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } private: const_subiterator_type it_; }; BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size_); } class iterator: public container_reference
, public bidirectional_iterator_base
{ public: typedef typename compressed_vector::value_type value_type; typedef typename compressed_vector::difference_type difference_type; typedef typename compressed_vector::true_reference reference; typedef typename compressed_vector::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference
(), it_ () {} BOOST_UBLAS_INLINE iterator (self_type &v, const subiterator_type &it): container_reference
(v), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it_; return *this; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()]; } // Index BOOST_UBLAS_INLINE size_type index () const { BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ()); BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ()); return (*this) ().zero_based (*it_); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference
::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } private: subiterator_type it_; friend class const_iterator; }; BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size_); } // Reverse iterator typedef reverse_iterator_base
const_reverse_iterator; typedef reverse_iterator_base
reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } BOOST_UBLAS_INLINE reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } // Serialization template
void serialize(Archive & ar, const unsigned int /* file_version */){ serialization::collection_size_type s (size_); ar & serialization::make_nvp("size",s); if (Archive::is_loading::value) { size_ = s; } // ISSUE: filled may be much less than capacity // ISSUE: index_data_ and value_data_ are undefined between filled and capacity (trouble with 'nan'-values) ar & serialization::make_nvp("capacity", capacity_); ar & serialization::make_nvp("filled", filled_); ar & serialization::make_nvp("index_data", index_data_); ar & serialization::make_nvp("value_data", value_data_); storage_invariants(); } private: void storage_invariants () const { BOOST_UBLAS_CHECK (capacity_ == index_data_.size (), internal_logic ()); BOOST_UBLAS_CHECK (capacity_ == value_data_.size (), internal_logic ()); BOOST_UBLAS_CHECK (filled_ <= capacity_, internal_logic ()); BOOST_UBLAS_CHECK ((0 == filled_) || (zero_based(index_data_[filled_ - 1]) < size_), internal_logic ()); } size_type size_; typename index_array_type::size_type capacity_; typename index_array_type::size_type filled_; index_array_type index_data_; value_array_type value_data_; static const value_type zero_; BOOST_UBLAS_INLINE static size_type zero_based (size_type k_based_index) { return k_based_index - IB; } BOOST_UBLAS_INLINE static size_type k_based (size_type zero_based_index) { return zero_based_index + IB; } friend class iterator; friend class const_iterator; }; template
const typename compressed_vector
::value_type compressed_vector
::zero_ = value_type/*zero*/(); // Coordimate array based sparse vector class // Thanks to Kresimir Fresl for extending this to cover different index bases. template
class coordinate_vector: public vector_container
> { typedef T &true_reference; typedef T *pointer; typedef const T *const_pointer; typedef coordinate_vector
self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_container
::operator (); #endif // ISSUE require type consistency check // is_convertable (IA::size_type, TA::size_type) typedef typename IA::value_type size_type; typedef typename IA::difference_type difference_type; typedef T value_type; typedef const T &const_reference; #ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE typedef T &reference; #else typedef sparse_vector_element
reference; #endif typedef IA index_array_type; typedef TA value_array_type; typedef const vector_reference
const_closure_type; typedef vector_reference
closure_type; typedef self_type vector_temporary_type; typedef sparse_tag storage_category; // Construction and destruction BOOST_UBLAS_INLINE coordinate_vector (): vector_container
(), size_ (0), capacity_ (restrict_capacity (0)), filled_ (0), sorted_filled_ (filled_), sorted_ (true), index_data_ (capacity_), value_data_ (capacity_) { storage_invariants (); } explicit BOOST_UBLAS_INLINE coordinate_vector (size_type size, size_type non_zeros = 0): vector_container
(), size_ (size), capacity_ (restrict_capacity (non_zeros)), filled_ (0), sorted_filled_ (filled_), sorted_ (true), index_data_ (capacity_), value_data_ (capacity_) { storage_invariants (); } BOOST_UBLAS_INLINE coordinate_vector (const coordinate_vector &v): vector_container
(), size_ (v.size_), capacity_ (v.capacity_), filled_ (v.filled_), sorted_filled_ (v.sorted_filled_), sorted_ (v.sorted_), index_data_ (v.index_data_), value_data_ (v.value_data_) { storage_invariants (); } template
BOOST_UBLAS_INLINE coordinate_vector (const vector_expression
&ae, size_type non_zeros = 0): vector_container
(), size_ (ae ().size ()), capacity_ (restrict_capacity (non_zeros)), filled_ (0), sorted_filled_ (filled_), sorted_ (true), index_data_ (capacity_), value_data_ (capacity_) { storage_invariants (); vector_assign
(*this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size () const { return size_; } BOOST_UBLAS_INLINE size_type nnz_capacity () const { return capacity_; } BOOST_UBLAS_INLINE size_type nnz () const { return filled_; } // Storage accessors BOOST_UBLAS_INLINE static size_type index_base () { return IB; } BOOST_UBLAS_INLINE typename index_array_type::size_type filled () const { return filled_; } BOOST_UBLAS_INLINE const index_array_type &index_data () const { return index_data_; } BOOST_UBLAS_INLINE const value_array_type &value_data () const { return value_data_; } BOOST_UBLAS_INLINE void set_filled (const typename index_array_type::size_type &sorted, const typename index_array_type::size_type &filled) { sorted_filled_ = sorted; filled_ = filled; storage_invariants (); return filled_; } BOOST_UBLAS_INLINE index_array_type &index_data () { return index_data_; } BOOST_UBLAS_INLINE value_array_type &value_data () { return value_data_; } // Resizing private: BOOST_UBLAS_INLINE size_type restrict_capacity (size_type non_zeros) const { // minimum non_zeros non_zeros = (std::max) (non_zeros, size_type (1)); // ISSUE no maximum as coordinate may contain inserted duplicates return non_zeros; } public: BOOST_UBLAS_INLINE void resize (size_type size, bool preserve = true) { if (preserve) sort (); // remove duplicate elements. size_ = size; capacity_ = restrict_capacity (capacity_); if (preserve) { index_data_. resize (capacity_, size_type ()); value_data_. resize (capacity_, value_type ()); filled_ = (std::min) (capacity_, filled_); while ((filled_ > 0) && (zero_based(index_data_[filled_ - 1]) >= size)) { --filled_; } } else { index_data_. resize (capacity_); value_data_. resize (capacity_); filled_ = 0; } sorted_filled_ = filled_; storage_invariants (); } // Reserving BOOST_UBLAS_INLINE void reserve (size_type non_zeros, bool preserve = true) { if (preserve) sort (); // remove duplicate elements. capacity_ = restrict_capacity (non_zeros); if (preserve) { index_data_. resize (capacity_, size_type ()); value_data_. resize (capacity_, value_type ()); filled_ = (std::min) (capacity_, filled_); } else { index_data_. resize (capacity_); value_data_. resize (capacity_); filled_ = 0; } sorted_filled_ = filled_; storage_invariants (); } // Element support BOOST_UBLAS_INLINE pointer find_element (size_type i) { return const_cast
(const_cast
(*this).find_element (i)); } BOOST_UBLAS_INLINE const_pointer find_element (size_type i) const { sort (); const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); if (it == index_data_.begin () + filled_ || *it != k_based (i)) return 0; return &value_data_ [it - index_data_.begin ()]; } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { BOOST_UBLAS_CHECK (i < size_, bad_index ()); sort (); const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); if (it == index_data_.begin () + filled_ || *it != k_based (i)) return zero_; return value_data_ [it - index_data_.begin ()]; } BOOST_UBLAS_INLINE true_reference ref (size_type i) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); sort (); subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); if (it == index_data_.begin () + filled_ || *it != k_based (i)) return insert_element (i, value_type/*zero*/()); else return value_data_ [it - index_data_.begin ()]; } BOOST_UBLAS_INLINE reference operator () (size_type i) { #ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE return ref (i); #else BOOST_UBLAS_CHECK (i < size_, bad_index ()); return reference (*this, i); #endif } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } // Element assignment BOOST_UBLAS_INLINE void append_element (size_type i, const_reference t) { if (filled_ >= capacity_) reserve (2 * filled_, true); BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ()); index_data_ [filled_] = k_based (i); value_data_ [filled_] = t; ++ filled_; sorted_ = false; storage_invariants (); } BOOST_UBLAS_INLINE true_reference insert_element (size_type i, const_reference t) { BOOST_UBLAS_CHECK (!find_element (i), bad_index ()); // duplicate element append_element (i, t); return value_data_ [filled_ - 1]; } BOOST_UBLAS_INLINE void erase_element (size_type i) { sort (); subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); typename std::iterator_traits
::difference_type n = it - index_data_.begin (); if (filled_ > typename index_array_type::size_type (n) && *it == k_based (i)) { std::copy (it + 1, index_data_.begin () + filled_, it); typename value_array_type::iterator itt (value_data_.begin () + n); std::copy (itt + 1, value_data_.begin () + filled_, itt); -- filled_; sorted_filled_ = filled_; } storage_invariants (); } // Zeroing BOOST_UBLAS_INLINE void clear () { filled_ = 0; sorted_filled_ = filled_; sorted_ = true; storage_invariants (); } // Assignment BOOST_UBLAS_INLINE coordinate_vector &operator = (const coordinate_vector &v) { if (this != &v) { size_ = v.size_; capacity_ = v.capacity_; filled_ = v.filled_; sorted_filled_ = v.sorted_filled_; sorted_ = v.sorted_; index_data_ = v.index_data_; value_data_ = v.value_data_; } storage_invariants (); return *this; } template
// Container assignment without temporary BOOST_UBLAS_INLINE coordinate_vector &operator = (const vector_container
&v) { resize (v ().size (), false); assign (v); return *this; } BOOST_UBLAS_INLINE coordinate_vector &assign_temporary (coordinate_vector &v) { swap (v); return *this; } template
BOOST_UBLAS_INLINE coordinate_vector &operator = (const vector_expression
&ae) { self_type temporary (ae, capacity_); return assign_temporary (temporary); } template
BOOST_UBLAS_INLINE coordinate_vector &assign (const vector_expression
&ae) { vector_assign
(*this, ae); return *this; } // Computed assignment template
BOOST_UBLAS_INLINE coordinate_vector &operator += (const vector_expression
&ae) { self_type temporary (*this + ae, capacity_); return assign_temporary (temporary); } template
// Container assignment without temporary BOOST_UBLAS_INLINE coordinate_vector &operator += (const vector_container
&v) { plus_assign (v); return *this; } template
BOOST_UBLAS_INLINE coordinate_vector &plus_assign (const vector_expression
&ae) { vector_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE coordinate_vector &operator -= (const vector_expression
&ae) { self_type temporary (*this - ae, capacity_); return assign_temporary (temporary); } template
// Container assignment without temporary BOOST_UBLAS_INLINE coordinate_vector &operator -= (const vector_container
&v) { minus_assign (v); return *this; } template
BOOST_UBLAS_INLINE coordinate_vector &minus_assign (const vector_expression
&ae) { vector_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE coordinate_vector &operator *= (const AT &at) { vector_assign_scalar
(*this, at); return *this; } template
BOOST_UBLAS_INLINE coordinate_vector &operator /= (const AT &at) { vector_assign_scalar
(*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (coordinate_vector &v) { if (this != &v) { std::swap (size_, v.size_); std::swap (capacity_, v.capacity_); std::swap (filled_, v.filled_); std::swap (sorted_filled_, v.sorted_filled_); std::swap (sorted_, v.sorted_); index_data_.swap (v.index_data_); value_data_.swap (v.value_data_); } storage_invariants (); } BOOST_UBLAS_INLINE friend void swap (coordinate_vector &v1, coordinate_vector &v2) { v1.swap (v2); } // Sorting and summation of duplicates BOOST_UBLAS_INLINE void sort () const { if (! sorted_ && filled_ > 0) { typedef index_pair_array
array_pair; array_pair ipa (filled_, index_data_, value_data_); const typename array_pair::iterator iunsorted = ipa.begin () + sorted_filled_; // sort new elements and merge std::sort (iunsorted, ipa.end ()); std::inplace_merge (ipa.begin (), iunsorted, ipa.end ()); // sum duplicates with += and remove size_type filled = 0; for (size_type i = 1; i < filled_; ++ i) { if (index_data_ [filled] != index_data_ [i]) { ++ filled; if (filled != i) { index_data_ [filled] = index_data_ [i]; value_data_ [filled] = value_data_ [i]; } } else { value_data_ [filled] += value_data_ [i]; } } filled_ = filled + 1; sorted_filled_ = filled_; sorted_ = true; storage_invariants (); } } // Back element insertion and erasure BOOST_UBLAS_INLINE void push_back (size_type i, const_reference t) { // must maintain sort order BOOST_UBLAS_CHECK (sorted_ && (filled_ == 0 || index_data_ [filled_ - 1] < k_based (i)), external_logic ()); if (filled_ >= capacity_) reserve (2 * filled_, true); BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ()); index_data_ [filled_] = k_based (i); value_data_ [filled_] = t; ++ filled_; sorted_filled_ = filled_; storage_invariants (); } BOOST_UBLAS_INLINE void pop_back () { // ISSUE invariants could be simpilfied if sorted required as precondition BOOST_UBLAS_CHECK (filled_ > 0, external_logic ()); -- filled_; sorted_filled_ = (std::min) (sorted_filled_, filled_); sorted_ = sorted_filled_ = filled_; storage_invariants (); } // Iterator types private: // Use index array iterator typedef typename IA::const_iterator const_subiterator_type; typedef typename IA::iterator subiterator_type; BOOST_UBLAS_INLINE true_reference at_element (size_type i) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); sort (); subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); BOOST_UBLAS_CHECK (it != index_data_.begin () + filled_ && *it == k_based (i), bad_index ()); return value_data_ [it - index_data_.begin ()]; } public: class const_iterator; class iterator; // Element lookup // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. const_iterator find (size_type i) const { sort (); return const_iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); } // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. iterator find (size_type i) { sort (); return iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less
())); } class const_iterator: public container_const_reference
, public bidirectional_iterator_base
{ public: typedef typename coordinate_vector::value_type value_type; typedef typename coordinate_vector::difference_type difference_type; typedef typename coordinate_vector::const_reference reference; typedef const typename coordinate_vector::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference
(), it_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &v, const const_subiterator_type &it): container_const_reference
(v), it_ (it) {} BOOST_UBLAS_INLINE const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here container_const_reference
(it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it_; return *this; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()]; } // Index BOOST_UBLAS_INLINE size_type index () const { BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ()); BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ()); return (*this) ().zero_based (*it_); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference
::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } private: const_subiterator_type it_; }; BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size_); } class iterator: public container_reference
, public bidirectional_iterator_base
{ public: typedef typename coordinate_vector::value_type value_type; typedef typename coordinate_vector::difference_type difference_type; typedef typename coordinate_vector::true_reference reference; typedef typename coordinate_vector::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference
(), it_ () {} BOOST_UBLAS_INLINE iterator (self_type &v, const subiterator_type &it): container_reference
(v), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it_; return *this; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()]; } // Index BOOST_UBLAS_INLINE size_type index () const { BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ()); BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ()); return (*this) ().zero_based (*it_); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference
::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it_ == it.it_; } private: subiterator_type it_; friend class const_iterator; }; BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size_); } // Reverse iterator typedef reverse_iterator_base