DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_TRIANGULAR_ #define _BOOST_UBLAS_TRIANGULAR_ #include
#include
#include
// Iterators based on ideas of Jeremy Siek namespace boost { namespace numeric { namespace ublas { namespace detail { using namespace boost::numeric::ublas; // Matrix resizing algorithm template
BOOST_UBLAS_INLINE void matrix_resize_preserve (M& m, M& temporary) { typedef L layout_type; typedef T triangular_type; typedef typename M::size_type size_type; const size_type msize1 (m.size1 ()); // original size const size_type msize2 (m.size2 ()); const size_type size1 (temporary.size1 ()); // new size is specified by temporary const size_type size2 (temporary.size2 ()); // Common elements to preserve const size_type size1_min = (std::min) (size1, msize1); const size_type size2_min = (std::min) (size2, msize2); // Order for major and minor sizes const size_type major_size = layout_type::size_M (size1_min, size2_min); const size_type minor_size = layout_type::size_m (size1_min, size2_min); // Indexing copy over major for (size_type major = 0; major != major_size; ++major) { for (size_type minor = 0; minor != minor_size; ++minor) { // find indexes - use invertability of element_ functions const size_type i1 = layout_type::index_M(major, minor); const size_type i2 = layout_type::index_m(major, minor); if ( triangular_type::other(i1,i2) ) { temporary.data () [triangular_type::element (layout_type (), i1, size1, i2, size2)] = m.data() [triangular_type::element (layout_type (), i1, msize1, i2, msize2)]; } } } m.assign_temporary (temporary); } } // Array based triangular matrix class template
class triangular_matrix: public matrix_container
> { typedef T *pointer; typedef TRI triangular_type; typedef L layout_type; typedef triangular_matrix
self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container
::operator (); #endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; typedef const matrix_reference
const_closure_type; typedef matrix_reference
closure_type; typedef vector
vector_temporary_type; typedef matrix
matrix_temporary_type; // general sub-matrix typedef packed_tag storage_category; typedef typename L::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE triangular_matrix (): matrix_container
(), size1_ (0), size2_ (0), data_ (0) {} BOOST_UBLAS_INLINE triangular_matrix (size_type size1, size_type size2): matrix_container
(), size1_ (size1), size2_ (size2), data_ (triangular_type::packed_size (layout_type (), size1, size2)) { } BOOST_UBLAS_INLINE triangular_matrix (size_type size1, size_type size2, const array_type &data): matrix_container
(), size1_ (size1), size2_ (size2), data_ (data) {} BOOST_UBLAS_INLINE triangular_matrix (const triangular_matrix &m): matrix_container
(), size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {} template
BOOST_UBLAS_INLINE triangular_matrix (const matrix_expression
&ae): matrix_container
(), size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (triangular_type::packed_size (layout_type (), size1_, size2_)) { matrix_assign
(*this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } // Storage accessors BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool preserve = true) { if (preserve) { self_type temporary (size1, size2); detail::matrix_resize_preserve
(*this, temporary); } else { data ().resize (triangular_type::packed_size (layout_type (), size1, size2)); size1_ = size1; size2_ = size2; } } BOOST_UBLAS_INLINE void resize_packed_preserve (size_type size1, size_type size2) { size1_ = size1; size2_ = size2; data ().resize (triangular_type::packed_size (layout_type (), size1_, size2_), value_type ()); } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); if (triangular_type::other (i, j)) return data () [triangular_type::element (layout_type (), i, size1_, j, size2_)]; else if (triangular_type::one (i, j)) return one_; else return zero_; } BOOST_UBLAS_INLINE reference at_element (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); return data () [triangular_type::element (layout_type (), i, size1_, j, size2_)]; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); if (!triangular_type::other (i, j)) { bad_index ().raise (); // NEVER reached } return data () [triangular_type::element (layout_type (), i, size1_, j, size2_)]; } // Element assignment BOOST_UBLAS_INLINE reference insert_element (size_type i, size_type j, const_reference t) { return (operator () (i, j) = t); } BOOST_UBLAS_INLINE void erase_element (size_type i, size_type j) { operator () (i, j) = value_type/*zero*/(); } // Zeroing BOOST_UBLAS_INLINE void clear () { // data ().clear (); std::fill (data ().begin (), data ().end (), value_type/*zero*/()); } // Assignment BOOST_UBLAS_INLINE triangular_matrix &operator = (const triangular_matrix &m) { size1_ = m.size1_; size2_ = m.size2_; data () = m.data (); return *this; } BOOST_UBLAS_INLINE triangular_matrix &assign_temporary (triangular_matrix &m) { swap (m); return *this; } template
BOOST_UBLAS_INLINE triangular_matrix &operator = (const matrix_expression
&ae) { self_type temporary (ae); return assign_temporary (temporary); } template
BOOST_UBLAS_INLINE triangular_matrix &assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE triangular_matrix& operator += (const matrix_expression
&ae) { self_type temporary (*this + ae); return assign_temporary (temporary); } template
BOOST_UBLAS_INLINE triangular_matrix &plus_assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE triangular_matrix& operator -= (const matrix_expression
&ae) { self_type temporary (*this - ae); return assign_temporary (temporary); } template
BOOST_UBLAS_INLINE triangular_matrix &minus_assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE triangular_matrix& operator *= (const AT &at) { matrix_assign_scalar
(*this, at); return *this; } template
BOOST_UBLAS_INLINE triangular_matrix& operator /= (const AT &at) { matrix_assign_scalar
(*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (triangular_matrix &m) { if (this != &m) { // BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ()); std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); data ().swap (m.data ()); } } BOOST_UBLAS_INLINE friend void swap (triangular_matrix &m1, triangular_matrix &m2) { m1.swap (m2); } // Iterator types #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1
iterator1; typedef indexed_iterator2
iterator2; typedef indexed_const_iterator1
const_iterator1; typedef indexed_const_iterator2
const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1
const_reverse_iterator1; typedef reverse_iterator_base1
reverse_iterator1; typedef reverse_iterator_base2
const_reverse_iterator2; typedef reverse_iterator_base2
reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (rank == 1) i = triangular_type::restrict1 (i, j); return const_iterator1 (*this, i, j); } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) i = triangular_type::mutable_restrict1 (i, j); return iterator1 (*this, i, j); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (rank == 1) j = triangular_type::restrict2 (i, j); return const_iterator2 (*this, i, j); } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) j = triangular_type::mutable_restrict2 (i, j); return iterator2 (*this, i, j); } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference
, public random_access_iterator_base
{ public: typedef typename triangular_matrix::value_type value_type; typedef typename triangular_matrix::difference_type difference_type; typedef typename triangular_matrix::const_reference reference; typedef const typename triangular_matrix::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference
(), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, size_type it1, size_type it2): container_const_reference
(m), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference
(it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return (*this) ().find2 (1, it1_, 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return (*this) ().find2 (1, it1_, (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference
::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: size_type it1_; size_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1_, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference
, public random_access_iterator_base
{ public: typedef typename triangular_matrix::value_type value_type; typedef typename triangular_matrix::difference_type difference_type; typedef typename triangular_matrix::reference reference; typedef typename triangular_matrix::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference
(), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, size_type it1, size_type it2): container_reference
(m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return (*this) ().find2 (1, it1_, 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return (*this) ().find2 (1, it1_, (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference
::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: size_type it1_; size_type it2_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1_, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference
, public random_access_iterator_base
{ public: typedef typename triangular_matrix::value_type value_type; typedef typename triangular_matrix::difference_type difference_type; typedef typename triangular_matrix::const_reference reference; typedef const typename triangular_matrix::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference
(), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, size_type it1, size_type it2): container_const_reference
(m), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference
(it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return (*this) ().find1 (1, 0, it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference
::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: size_type it1_; size_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2_); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference
, public random_access_iterator_base
{ public: typedef typename triangular_matrix::value_type value_type; typedef typename triangular_matrix::difference_type difference_type; typedef typename triangular_matrix::reference reference; typedef typename triangular_matrix::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference
(), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, size_type it1, size_type it2): container_reference
(m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return (*this) ().find1 (1, 0, it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference
::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: size_type it1_; size_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2_); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: size_type size1_; size_type size2_; array_type data_; static const value_type zero_; static const value_type one_; }; template
const typename triangular_matrix
::value_type triangular_matrix
::zero_ = value_type/*zero*/(); template
const typename triangular_matrix
::value_type triangular_matrix
::one_ (1); // Triangular matrix adaptor class template
class triangular_adaptor: public matrix_expression
> { typedef triangular_adaptor
self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_expression
::operator (); #endif typedef const M const_matrix_type; typedef M matrix_type; typedef TRI triangular_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_
, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_
, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef const self_type const_closure_type; typedef self_type closure_type; // Replaced by _temporary_traits to avoid type requirements on M //typedef typename M::vector_temporary_type vector_temporary_type; //typedef typename M::matrix_temporary_type matrix_temporary_type; typedef typename storage_restrict_traits
::storage_category storage_category; typedef typename M::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE triangular_adaptor (matrix_type &data): matrix_expression
(), data_ (data) {} BOOST_UBLAS_INLINE triangular_adaptor (const triangular_adaptor &m): matrix_expression
(), data_ (m.data_) {} // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return data_.size1 (); } BOOST_UBLAS_INLINE size_type size2 () const { return data_.size2 (); } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); if (triangular_type::other (i, j)) return data () (i, j); else if (triangular_type::one (i, j)) return one_; else return zero_; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); if (!triangular_type::other (i, j)) { bad_index ().raise (); // NEVER reached } return data () (i, j); } #else BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); if (!triangular_type::other (i, j)) { bad_index ().raise (); // NEVER reached } return data () (i, j); } #endif // Assignment BOOST_UBLAS_INLINE triangular_adaptor &operator = (const triangular_adaptor &m) { matrix_assign
(*this, m); return *this; } BOOST_UBLAS_INLINE triangular_adaptor &assign_temporary (triangular_adaptor &m) { *this = m; return *this; } template
BOOST_UBLAS_INLINE triangular_adaptor &operator = (const matrix_expression
&ae) { matrix_assign
(*this, matrix
(ae)); return *this; } template
BOOST_UBLAS_INLINE triangular_adaptor &assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE triangular_adaptor& operator += (const matrix_expression
&ae) { matrix_assign
(*this, matrix
(*this + ae)); return *this; } template
BOOST_UBLAS_INLINE triangular_adaptor &plus_assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE triangular_adaptor& operator -= (const matrix_expression
&ae) { matrix_assign
(*this, matrix
(*this - ae)); return *this; } template
BOOST_UBLAS_INLINE triangular_adaptor &minus_assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE triangular_adaptor& operator *= (const AT &at) { matrix_assign_scalar
(*this, at); return *this; } template
BOOST_UBLAS_INLINE triangular_adaptor& operator /= (const AT &at) { matrix_assign_scalar
(*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const triangular_adaptor &ta) const { return (*this).data ().same_closure (ta.data ()); } // Swapping BOOST_UBLAS_INLINE void swap (triangular_adaptor &m) { if (this != &m) matrix_swap
(*this, m); } BOOST_UBLAS_INLINE friend void swap (triangular_adaptor &m1, triangular_adaptor &m2) { m1.swap (m2); } // Iterator types private: typedef typename M::const_iterator1 const_subiterator1_type; typedef typename boost::mpl::if_
, typename M::const_iterator1, typename M::iterator1>::type subiterator1_type; typedef typename M::const_iterator2 const_subiterator2_type; typedef typename boost::mpl::if_
, typename M::const_iterator2, typename M::iterator2>::type subiterator2_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1
iterator1; typedef indexed_iterator2
iterator2; typedef indexed_const_iterator1
const_iterator1; typedef indexed_const_iterator2
const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1
const_reverse_iterator1; typedef reverse_iterator_base1
reverse_iterator1; typedef reverse_iterator_base2
const_reverse_iterator2; typedef reverse_iterator_base2
reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (rank == 1) i = triangular_type::restrict1 (i, j); return const_iterator1 (*this, data ().find1 (rank, i, j)); } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) i = triangular_type::mutable_restrict1 (i, j); return iterator1 (*this, data ().find1 (rank, i, j)); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (rank == 1) j = triangular_type::restrict2 (i, j); return const_iterator2 (*this, data ().find2 (rank, i, j)); } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) j = triangular_type::mutable_restrict2 (i, j); return iterator2 (*this, data ().find2 (rank, i, j)); } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference
, public random_access_iterator_base
::iterator_category, const_iterator1, value_type> { public: typedef typename const_subiterator1_type::value_type value_type; typedef typename const_subiterator1_type::difference_type difference_type; typedef typename const_subiterator1_type::reference reference; typedef typename const_subiterator1_type::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference
(), it1_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, const const_subiterator1_type &it1): container_const_reference
(m), it1_ (it1) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference
(it ()), it1_ (it.it1_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); if (triangular_type::other (i, j)) return *it1_; else return (*this) () (i, j); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return (*this) ().find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return (*this) ().find2 (1, index1 (), (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it1_.index2 (); } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference
::assign (&it ()); it1_ = it.it1_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ < it.it1_; } private: const_subiterator1_type it1_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference
, public random_access_iterator_base
::iterator_category, iterator1, value_type> { public: typedef typename subiterator1_type::value_type value_type; typedef typename subiterator1_type::difference_type difference_type; typedef typename subiterator1_type::reference reference; typedef typename subiterator1_type::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference
(), it1_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, const subiterator1_type &it1): container_reference
(m), it1_ (it1) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); if (triangular_type::other (i, j)) return *it1_; else return (*this) () (i, j); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return (*this) ().find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return (*this) ().find2 (1, index1 (), (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it1_.index2 (); } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference
::assign (&it ()); it1_ = it.it1_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ < it.it1_; } private: subiterator1_type it1_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference
, public random_access_iterator_base
::iterator_category, const_iterator2, value_type> { public: typedef typename const_subiterator2_type::value_type value_type; typedef typename const_subiterator2_type::difference_type difference_type; typedef typename const_subiterator2_type::reference reference; typedef typename const_subiterator2_type::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference
(), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, const const_subiterator2_type &it2): container_const_reference
(m), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference
(it ()), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); if (triangular_type::other (i, j)) return *it2_; else return (*this) () (i, j); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return (*this) ().find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it2_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index2 (); } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference
::assign (&it ()); it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ < it.it2_; } private: const_subiterator2_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2 ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference
, public random_access_iterator_base
::iterator_category, iterator2, value_type> { public: typedef typename subiterator2_type::value_type value_type; typedef typename subiterator2_type::difference_type difference_type; typedef typename subiterator2_type::reference reference; typedef typename subiterator2_type::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference
(), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, const subiterator2_type &it2): container_reference
(m), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); if (triangular_type::other (i, j)) return *it2_; else return (*this) () (i, j); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return (*this) ().find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it2_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index2 (); } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference
::assign (&it ()); it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ < it.it2_; } private: subiterator2_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2 ()); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: matrix_closure_type data_; static const value_type zero_; static const value_type one_; }; template
const typename triangular_adaptor
::value_type triangular_adaptor
::zero_ = value_type/*zero*/(); template
const typename triangular_adaptor
::value_type triangular_adaptor
::one_ (1); template
struct vector_temporary_traits< triangular_adaptor
> : vector_temporary_traits< typename boost::remove_const
::type > {} ; template
struct vector_temporary_traits< const triangular_adaptor
> : vector_temporary_traits< typename boost::remove_const
::type > {} ; template
struct matrix_temporary_traits< triangular_adaptor
> : matrix_temporary_traits< typename boost::remove_const
::type > {}; template
struct matrix_temporary_traits< const triangular_adaptor
> : matrix_temporary_traits< typename boost::remove_const
::type > {}; template
struct matrix_vector_solve_traits { typedef typename promote_traits
::promote_type promote_type; typedef vector
result_type; }; // Operations: // n * (n - 1) / 2 + n = n * (n + 1) / 2 multiplications, // n * (n - 1) / 2 additions // Dense (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, lower_tag, column_major_tag, dense_proxy_tag) { typedef typename E2::size_type size_type; typedef typename E2::difference_type difference_type; typedef typename E2::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size1 () == e1 ().size2 (), bad_size ()); BOOST_UBLAS_CHECK (e1 ().size2 () == e2 ().size (), bad_size ()); size_type size = e2 ().size (); for (size_type n = 0; n < size; ++ n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e1 () (n, n) != value_type/*zero*/(), singular ()); #else if (e1 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e2 () (n) /= e1 () (n, n); if (t != value_type/*zero*/()) { for (size_type m = n + 1; m < size; ++ m) e2 () (m) -= e1 () (m, n) * t; } } } // Packed (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, lower_tag, column_major_tag, packed_proxy_tag) { typedef typename E2::size_type size_type; typedef typename E2::difference_type difference_type; typedef typename E2::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size1 () == e1 ().size2 (), bad_size ()); BOOST_UBLAS_CHECK (e1 ().size2 () == e2 ().size (), bad_size ()); size_type size = e2 ().size (); for (size_type n = 0; n < size; ++ n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e1 () (n, n) != value_type/*zero*/(), singular ()); #else if (e1 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e2 () (n) /= e1 () (n, n); if (t != value_type/*zero*/()) { typename E1::const_iterator1 it1e1 (e1 ().find1 (1, n + 1, n)); typename E1::const_iterator1 it1e1_end (e1 ().find1 (1, e1 ().size1 (), n)); difference_type m (it1e1_end - it1e1); while (-- m >= 0) e2 () (it1e1.index1 ()) -= *it1e1 * t, ++ it1e1; } } } // Sparse (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, lower_tag, column_major_tag, unknown_storage_tag) { typedef typename E2::size_type size_type; typedef typename E2::difference_type difference_type; typedef typename E2::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size1 () == e1 ().size2 (), bad_size ()); BOOST_UBLAS_CHECK (e1 ().size2 () == e2 ().size (), bad_size ()); size_type size = e2 ().size (); for (size_type n = 0; n < size; ++ n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e1 () (n, n) != value_type/*zero*/(), singular ()); #else if (e1 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e2 () (n) /= e1 () (n, n); if (t != value_type/*zero*/()) { typename E1::const_iterator1 it1e1 (e1 ().find1 (1, n + 1, n)); typename E1::const_iterator1 it1e1_end (e1 ().find1 (1, e1 ().size1 (), n)); while (it1e1 != it1e1_end) e2 () (it1e1.index1 ()) -= *it1e1 * t, ++ it1e1; } } } // Redirectors :-) template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, lower_tag, column_major_tag) { typedef typename E1::storage_category storage_category; inplace_solve (e1, e2, lower_tag (), column_major_tag (), storage_category ()); } template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, lower_tag, row_major_tag) { typedef typename E1::storage_category storage_category; inplace_solve (e2, trans (e1), upper_tag (), row_major_tag (), storage_category ()); } // Dispatcher template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, lower_tag) { typedef typename E1::orientation_category orientation_category; inplace_solve (e1, e2, lower_tag (), orientation_category ()); } template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, unit_lower_tag) { typedef typename E1::orientation_category orientation_category; inplace_solve (triangular_adaptor
(e1 ()), e2, unit_lower_tag (), orientation_category ()); } // Dense (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, upper_tag, column_major_tag, dense_proxy_tag) { typedef typename E2::size_type size_type; typedef typename E2::difference_type difference_type; typedef typename E2::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size1 () == e1 ().size2 (), bad_size ()); BOOST_UBLAS_CHECK (e1 ().size2 () == e2 ().size (), bad_size ()); size_type size = e2 ().size (); for (difference_type n = size - 1; n >= 0; -- n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e1 () (n, n) != value_type/*zero*/(), singular ()); #else if (e1 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e2 () (n) /= e1 () (n, n); if (t != value_type/*zero*/()) { for (difference_type m = n - 1; m >= 0; -- m) e2 () (m) -= e1 () (m, n) * t; } } } // Packed (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, upper_tag, column_major_tag, packed_proxy_tag) { typedef typename E2::size_type size_type; typedef typename E2::difference_type difference_type; typedef typename E2::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size1 () == e1 ().size2 (), bad_size ()); BOOST_UBLAS_CHECK (e1 ().size2 () == e2 ().size (), bad_size ()); size_type size = e2 ().size (); for (difference_type n = size - 1; n >= 0; -- n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e1 () (n, n) != value_type/*zero*/(), singular ()); #else if (e1 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e2 () (n) /= e1 () (n, n); if (t != value_type/*zero*/()) { typename E1::const_reverse_iterator1 it1e1 (e1 ().find1 (1, n, n)); typename E1::const_reverse_iterator1 it1e1_rend (e1 ().find1 (1, 0, n)); difference_type m (it1e1_rend - it1e1); while (-- m >= 0) e2 () (it1e1.index1 ()) -= *it1e1 * t, ++ it1e1; } } } // Sparse (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, upper_tag, column_major_tag, unknown_storage_tag) { typedef typename E2::size_type size_type; typedef typename E2::difference_type difference_type; typedef typename E2::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size1 () == e1 ().size2 (), bad_size ()); BOOST_UBLAS_CHECK (e1 ().size2 () == e2 ().size (), bad_size ()); size_type size = e2 ().size (); for (difference_type n = size - 1; n >= 0; -- n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e1 () (n, n) != value_type/*zero*/(), singular ()); #else if (e1 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e2 () (n) /= e1 () (n, n); if (t != value_type/*zero*/()) { typename E1::const_reverse_iterator1 it1e1 (e1 ().find1 (1, n, n)); typename E1::const_reverse_iterator1 it1e1_rend (e1 ().find1 (1, 0, n)); while (it1e1 != it1e1_rend) e2 () (it1e1.index1 ()) -= *it1e1 * t, ++ it1e1; } } } // Redirectors :-) template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, upper_tag, column_major_tag) { typedef typename E1::storage_category storage_category; inplace_solve (e1, e2, upper_tag (), column_major_tag (), storage_category ()); } template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, upper_tag, row_major_tag) { typedef typename E1::storage_category storage_category; inplace_solve (e2, trans (e1), lower_tag (), row_major_tag (), storage_category ()); } // Dispatcher template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, upper_tag) { typedef typename E1::orientation_category orientation_category; inplace_solve (e1, e2, upper_tag (), orientation_category ()); } template
BOOST_UBLAS_INLINE void inplace_solve (const matrix_expression
&e1, vector_expression
&e2, unit_upper_tag) { typedef typename E1::orientation_category orientation_category; inplace_solve (triangular_adaptor
(e1 ()), e2, unit_upper_tag (), orientation_category ()); } template
BOOST_UBLAS_INLINE typename matrix_vector_solve_traits
::result_type solve (const matrix_expression
&e1, const vector_expression
&e2, C) { typename matrix_vector_solve_traits
::result_type r (e2); inplace_solve (e1, r, C ()); return r; } // Dense (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, lower_tag, row_major_tag, dense_proxy_tag) { typedef typename E1::size_type size_type; typedef typename E1::difference_type difference_type; typedef typename E1::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size () == e2 ().size1 (), bad_size ()); BOOST_UBLAS_CHECK (e2 ().size1 () == e2 ().size2 (), bad_size ()); size_type size = e1 ().size (); for (difference_type n = size - 1; n >= 0; -- n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e2 () (n, n) != value_type/*zero*/(), singular ()); #else if (e2 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e1 () (n) /= e2 () (n, n); if (t != value_type/*zero*/()) { for (difference_type m = n - 1; m >= 0; -- m) e1 () (m) -= t * e2 () (n, m); } } } // Packed (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, lower_tag, row_major_tag, packed_proxy_tag) { typedef typename E1::size_type size_type; typedef typename E1::difference_type difference_type; typedef typename E1::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size () == e2 ().size1 (), bad_size ()); BOOST_UBLAS_CHECK (e2 ().size1 () == e2 ().size2 (), bad_size ()); size_type size = e1 ().size (); for (difference_type n = size - 1; n >= 0; -- n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e2 () (n, n) != value_type/*zero*/(), singular ()); #else if (e2 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e1 () (n) /= e2 () (n, n); if (t != value_type/*zero*/()) { typename E2::const_reverse_iterator2 it2e2 (e2 ().find2 (1, n, n)); typename E2::const_reverse_iterator2 it2e2_rend (e2 ().find2 (1, n, 0)); difference_type m (it2e2_rend - it2e2); while (-- m >= 0) e1 () (it2e2.index2 ()) -= *it2e2 * t, ++ it2e2; } } } // Sparse (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, lower_tag, row_major_tag, unknown_storage_tag) { typedef typename E1::size_type size_type; typedef typename E1::difference_type difference_type; typedef typename E1::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size () == e2 ().size1 (), bad_size ()); BOOST_UBLAS_CHECK (e2 ().size1 () == e2 ().size2 (), bad_size ()); size_type size = e1 ().size (); for (difference_type n = size - 1; n >= 0; -- n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e2 () (n, n) != value_type/*zero*/(), singular ()); #else if (e2 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e1 () (n) /= e2 () (n, n); if (t != value_type/*zero*/()) { typename E2::const_reverse_iterator2 it2e2 (e2 ().find2 (1, n, n)); typename E2::const_reverse_iterator2 it2e2_rend (e2 ().find2 (1, n, 0)); while (it2e2 != it2e2_rend) e1 () (it2e2.index2 ()) -= *it2e2 * t, ++ it2e2; } } } // Redirectors :-) template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, lower_tag, row_major_tag) { typedef typename E1::storage_category storage_category; inplace_solve (e1, e2, lower_tag (), row_major_tag (), storage_category ()); } template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, lower_tag, column_major_tag) { typedef typename E1::storage_category storage_category; inplace_solve (trans (e2), e1, upper_tag (), row_major_tag (), storage_category ()); } // Dispatcher template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, lower_tag) { typedef typename E2::orientation_category orientation_category; inplace_solve (e1, e2, lower_tag (), orientation_category ()); } template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, unit_lower_tag) { typedef typename E2::orientation_category orientation_category; inplace_solve (e1, triangular_adaptor
(e2 ()), unit_lower_tag (), orientation_category ()); } // Dense (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, upper_tag, row_major_tag, dense_proxy_tag) { typedef typename E1::size_type size_type; typedef typename E1::difference_type difference_type; typedef typename E1::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size () == e2 ().size1 (), bad_size ()); BOOST_UBLAS_CHECK (e2 ().size1 () == e2 ().size2 (), bad_size ()); size_type size = e1 ().size (); for (size_type n = 0; n < size; ++ n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e2 () (n, n) != value_type/*zero*/(), singular ()); #else if (e2 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e1 () (n) /= e2 () (n, n); if (t != value_type/*zero*/()) { for (size_type m = n + 1; m < size; ++ m) e1 () (m) -= t * e2 () (n, m); } } } // Packed (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, upper_tag, row_major_tag, packed_proxy_tag) { typedef typename E1::size_type size_type; typedef typename E1::difference_type difference_type; typedef typename E1::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size () == e2 ().size1 (), bad_size ()); BOOST_UBLAS_CHECK (e2 ().size1 () == e2 ().size2 (), bad_size ()); size_type size = e1 ().size (); for (size_type n = 0; n < size; ++ n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e2 () (n, n) != value_type/*zero*/(), singular ()); #else if (e2 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e1 () (n) /= e2 () (n, n); if (t != value_type/*zero*/()) { typename E2::const_iterator2 it2e2 (e2 ().find2 (1, n, n + 1)); typename E2::const_iterator2 it2e2_end (e2 ().find2 (1, n, e2 ().size2 ())); difference_type m (it2e2_end - it2e2); while (-- m >= 0) e1 () (it2e2.index2 ()) -= *it2e2 * t, ++ it2e2; } } } // Sparse (proxy) case template
BOOST_UBLAS_INLINE void inplace_solve (vector_expression
&e1, const matrix_expression
&e2, upper_tag, row_major_tag, unknown_storage_tag) { typedef typename E1::size_type size_type; typedef typename E1::difference_type difference_type; typedef typename E1::value_type value_type; BOOST_UBLAS_CHECK (e1 ().size () == e2 ().size1 (), bad_size ()); BOOST_UBLAS_CHECK (e2 ().size1 () == e2 ().size2 (), bad_size ()); size_type size = e1 ().size (); for (size_type n = 0; n < size; ++ n) { #ifndef BOOST_UBLAS_SINGULAR_CHECK BOOST_UBLAS_CHECK (e2 () (n, n) != value_type/*zero*/(), singular ()); #else if (e2 () (n, n) == value_type/*zero*/()) singular ().raise (); #endif value_type t = e1 () (n) /= e2 () (n, n); if (t != value_type/*zero*/()) { typename E2::const_iterator2 it2e2 (e2 ().find2 (1, n, n + 1)); typename E2::const_iterator2 it2e2_end (e2 ().find2 (1, n, e2 ().size2 ())); while (it2e2 != it2e2_end) e1 () (it2e2.index2 ()) -= *it2e2 * t, ++ it2e2; } } } // Redirectors :-) template