DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_OPERATION_ #define _BOOST_UBLAS_OPERATION_ #include
/** \file operation.hpp * \brief This file contains some specialized products. */ // axpy-based products // Alexei Novakov had a lot of ideas to improve these. Thanks. // Hendrik Kueck proposed some new kernel. Thanks again. namespace boost { namespace numeric { namespace ublas { template
BOOST_UBLAS_INLINE V & axpy_prod (const compressed_matrix
&e1, const vector_expression
&e2, V &v, row_major_tag) { typedef typename V::size_type size_type; typedef typename V::value_type value_type; for (size_type i = 0; i < e1.filled1 () -1; ++ i) { size_type begin = e1.index1_data () [i]; size_type end = e1.index1_data () [i + 1]; value_type t (v (i)); for (size_type j = begin; j < end; ++ j) t += e1.value_data () [j] * e2 () (e1.index2_data () [j]); v (i) = t; } return v; } template
BOOST_UBLAS_INLINE V & axpy_prod (const compressed_matrix
&e1, const vector_expression
&e2, V &v, column_major_tag) { typedef typename V::size_type size_type; for (size_type j = 0; j < e1.filled1 () -1; ++ j) { size_type begin = e1.index1_data () [j]; size_type end = e1.index1_data () [j + 1]; for (size_type i = begin; i < end; ++ i) v (e1.index2_data () [i]) += e1.value_data () [i] * e2 () (j); } return v; } // Dispatcher template
BOOST_UBLAS_INLINE V & axpy_prod (const compressed_matrix
&e1, const vector_expression
&e2, V &v, bool init = true) { typedef typename V::value_type value_type; typedef typename L1::orientation_category orientation_category; if (init) v.assign (zero_vector
(e1.size1 ())); #if BOOST_UBLAS_TYPE_CHECK vector
cv (v); typedef typename type_traits
::real_type real_type; real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2)); indexing_vector_assign
(cv, prod (e1, e2)); #endif axpy_prod (e1, e2, v, orientation_category ()); #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits
::epsilon () * verrorbound, internal_logic ()); #endif return v; } template
BOOST_UBLAS_INLINE V axpy_prod (const compressed_matrix
&e1, const vector_expression
&e2) { typedef V vector_type; vector_type v (e1.size1 ()); return axpy_prod (e1, e2, v, true); } template
BOOST_UBLAS_INLINE V & axpy_prod (const coordinate_matrix
&e1, const vector_expression
&e2, V &v, bool init = true) { typedef typename V::size_type size_type; typedef typename V::value_type value_type; typedef L1 layout_type; size_type size1 = e1.size1(); size_type size2 = e1.size2(); if (init) { noalias(v) = zero_vector
(size1); } for (size_type i = 0; i < e1.nnz(); ++i) { size_type row_index = layout_type::index_M( e1.index1_data () [i], e1.index2_data () [i] ); size_type col_index = layout_type::index_m( e1.index1_data () [i], e1.index2_data () [i] ); v( row_index ) += e1.value_data () [i] * e2 () (col_index); } return v; } template
BOOST_UBLAS_INLINE V & axpy_prod (const matrix_expression
&e1, const vector_expression
&e2, V &v, packed_random_access_iterator_tag, row_major_tag) { typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename V::size_type size_type; typename expression1_type::const_iterator1 it1 (e1 ().begin1 ()); typename expression1_type::const_iterator1 it1_end (e1 ().end1 ()); while (it1 != it1_end) { size_type index1 (it1.index1 ()); #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION typename expression1_type::const_iterator2 it2 (it1.begin ()); typename expression1_type::const_iterator2 it2_end (it1.end ()); #else typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ())); typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ())); #endif while (it2 != it2_end) { v (index1) += *it2 * e2 () (it2.index2 ()); ++ it2; } ++ it1; } return v; } template
BOOST_UBLAS_INLINE V & axpy_prod (const matrix_expression
&e1, const vector_expression
&e2, V &v, packed_random_access_iterator_tag, column_major_tag) { typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename V::size_type size_type; typename expression1_type::const_iterator2 it2 (e1 ().begin2 ()); typename expression1_type::const_iterator2 it2_end (e1 ().end2 ()); while (it2 != it2_end) { size_type index2 (it2.index2 ()); #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION typename expression1_type::const_iterator1 it1 (it2.begin ()); typename expression1_type::const_iterator1 it1_end (it2.end ()); #else typename expression1_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ())); typename expression1_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ())); #endif while (it1 != it1_end) { v (it1.index1 ()) += *it1 * e2 () (index2); ++ it1; } ++ it2; } return v; } template
BOOST_UBLAS_INLINE V & axpy_prod (const matrix_expression
&e1, const vector_expression
&e2, V &v, sparse_bidirectional_iterator_tag) { typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename V::size_type size_type; typename expression2_type::const_iterator it (e2 ().begin ()); typename expression2_type::const_iterator it_end (e2 ().end ()); while (it != it_end) { v.plus_assign (column (e1 (), it.index ()) * *it); ++ it; } return v; } // Dispatcher template
BOOST_UBLAS_INLINE V & axpy_prod (const matrix_expression
&e1, const vector_expression
&e2, V &v, packed_random_access_iterator_tag) { typedef typename E1::orientation_category orientation_category; return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ()); } /** \brief computes
v += A x
or
v = A x
in an optimized fashion. \param e1 the matrix expression \c A \param e2 the vector expression \c x \param v the result vector \c v \param init a boolean parameter
axpy_prod(A, x, v, init)
implements the well known axpy-product. Setting \a init to \c true is equivalent to call
v.clear()
before
axpy_prod
. Currently \a init defaults to \c true, but this may change in the future. Up to now there are some specialisation for compressed matrices that give a large speed up compared to prod. \ingroup blas2 \internal template parameters: \param V type of the result vector \c v \param E1 type of a matrix expression \c A \param E2 type of a vector expression \c x */ template
BOOST_UBLAS_INLINE V & axpy_prod (const matrix_expression
&e1, const vector_expression
&e2, V &v, bool init = true) { typedef typename V::value_type value_type; typedef typename E2::const_iterator::iterator_category iterator_category; if (init) v.assign (zero_vector
(e1 ().size1 ())); #if BOOST_UBLAS_TYPE_CHECK vector
cv (v); typedef typename type_traits
::real_type real_type; real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2)); indexing_vector_assign
(cv, prod (e1, e2)); #endif axpy_prod (e1, e2, v, iterator_category ()); #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits
::epsilon () * verrorbound, internal_logic ()); #endif return v; } template
BOOST_UBLAS_INLINE V axpy_prod (const matrix_expression
&e1, const vector_expression
&e2) { typedef V vector_type; vector_type v (e1 ().size1 ()); return axpy_prod (e1, e2, v, true); } template
BOOST_UBLAS_INLINE V & axpy_prod (const vector_expression
&e1, const compressed_matrix
&e2, V &v, column_major_tag) { typedef typename V::size_type size_type; typedef typename V::value_type value_type; for (size_type j = 0; j < e2.filled1 () -1; ++ j) { size_type begin = e2.index1_data () [j]; size_type end = e2.index1_data () [j + 1]; value_type t (v (j)); for (size_type i = begin; i < end; ++ i) t += e2.value_data () [i] * e1 () (e2.index2_data () [i]); v (j) = t; } return v; } template
BOOST_UBLAS_INLINE V & axpy_prod (const vector_expression
&e1, const compressed_matrix
&e2, V &v, row_major_tag) { typedef typename V::size_type size_type; for (size_type i = 0; i < e2.filled1 () -1; ++ i) { size_type begin = e2.index1_data () [i]; size_type end = e2.index1_data () [i + 1]; for (size_type j = begin; j < end; ++ j) v (e2.index2_data () [j]) += e2.value_data () [j] * e1 () (i); } return v; } // Dispatcher template
BOOST_UBLAS_INLINE V & axpy_prod (const vector_expression
&e1, const compressed_matrix
&e2, V &v, bool init = true) { typedef typename V::value_type value_type; typedef typename L2::orientation_category orientation_category; if (init) v.assign (zero_vector
(e2.size2 ())); #if BOOST_UBLAS_TYPE_CHECK vector
cv (v); typedef typename type_traits
::real_type real_type; real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2)); indexing_vector_assign
(cv, prod (e1, e2)); #endif axpy_prod (e1, e2, v, orientation_category ()); #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits
::epsilon () * verrorbound, internal_logic ()); #endif return v; } template
BOOST_UBLAS_INLINE V axpy_prod (const vector_expression
&e1, const compressed_matrix
&e2) { typedef V vector_type; vector_type v (e2.size2 ()); return axpy_prod (e1, e2, v, true); } template
BOOST_UBLAS_INLINE V & axpy_prod (const vector_expression
&e1, const matrix_expression
&e2, V &v, packed_random_access_iterator_tag, column_major_tag) { typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename V::size_type size_type; typename expression2_type::const_iterator2 it2 (e2 ().begin2 ()); typename expression2_type::const_iterator2 it2_end (e2 ().end2 ()); while (it2 != it2_end) { size_type index2 (it2.index2 ()); #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION typename expression2_type::const_iterator1 it1 (it2.begin ()); typename expression2_type::const_iterator1 it1_end (it2.end ()); #else typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ())); typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ())); #endif while (it1 != it1_end) { v (index2) += *it1 * e1 () (it1.index1 ()); ++ it1; } ++ it2; } return v; } template
BOOST_UBLAS_INLINE V & axpy_prod (const vector_expression
&e1, const matrix_expression
&e2, V &v, packed_random_access_iterator_tag, row_major_tag) { typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename V::size_type size_type; typename expression2_type::const_iterator1 it1 (e2 ().begin1 ()); typename expression2_type::const_iterator1 it1_end (e2 ().end1 ()); while (it1 != it1_end) { size_type index1 (it1.index1 ()); #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION typename expression2_type::const_iterator2 it2 (it1.begin ()); typename expression2_type::const_iterator2 it2_end (it1.end ()); #else typename expression2_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ())); typename expression2_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ())); #endif while (it2 != it2_end) { v (it2.index2 ()) += *it2 * e1 () (index1); ++ it2; } ++ it1; } return v; } template
BOOST_UBLAS_INLINE V & axpy_prod (const vector_expression
&e1, const matrix_expression
&e2, V &v, sparse_bidirectional_iterator_tag) { typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename V::size_type size_type; typename expression1_type::const_iterator it (e1 ().begin ()); typename expression1_type::const_iterator it_end (e1 ().end ()); while (it != it_end) { v.plus_assign (*it * row (e2 (), it.index ())); ++ it; } return v; } // Dispatcher template
BOOST_UBLAS_INLINE V & axpy_prod (const vector_expression
&e1, const matrix_expression
&e2, V &v, packed_random_access_iterator_tag) { typedef typename E2::orientation_category orientation_category; return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ()); } /** \brief computes
v += A
T
x
or
v = A
T
x
in an optimized fashion. \param e1 the vector expression \c x \param e2 the matrix expression \c A \param v the result vector \c v \param init a boolean parameter
axpy_prod(x, A, v, init)
implements the well known axpy-product. Setting \a init to \c true is equivalent to call
v.clear()
before
axpy_prod
. Currently \a init defaults to \c true, but this may change in the future. Up to now there are some specialisation for compressed matrices that give a large speed up compared to prod. \ingroup blas2 \internal template parameters: \param V type of the result vector \c v \param E1 type of a vector expression \c x \param E2 type of a matrix expression \c A */ template
BOOST_UBLAS_INLINE V & axpy_prod (const vector_expression
&e1, const matrix_expression
&e2, V &v, bool init = true) { typedef typename V::value_type value_type; typedef typename E1::const_iterator::iterator_category iterator_category; if (init) v.assign (zero_vector
(e2 ().size2 ())); #if BOOST_UBLAS_TYPE_CHECK vector
cv (v); typedef typename type_traits
::real_type real_type; real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2)); indexing_vector_assign
(cv, prod (e1, e2)); #endif axpy_prod (e1, e2, v, iterator_category ()); #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits
::epsilon () * verrorbound, internal_logic ()); #endif return v; } template
BOOST_UBLAS_INLINE V axpy_prod (const vector_expression
&e1, const matrix_expression
&e2) { typedef V vector_type; vector_type v (e2 ().size2 ()); return axpy_prod (e1, e2, v, true); } template
BOOST_UBLAS_INLINE M & axpy_prod (const matrix_expression
&e1, const matrix_expression
&e2, M &m, TRI, dense_proxy_tag, row_major_tag) { typedef M matrix_type; typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK matrix
cm (m); typedef typename type_traits
::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign
(cm, prod (e1, e2), row_major_tag ()); #endif size_type size1 (e1 ().size1 ()); size_type size2 (e1 ().size2 ()); for (size_type i = 0; i < size1; ++ i) for (size_type j = 0; j < size2; ++ j) row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j)); #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits
::epsilon () * merrorbound, internal_logic ()); #endif return m; } template
BOOST_UBLAS_INLINE M & axpy_prod (const matrix_expression
&e1, const matrix_expression
&e2, M &m, TRI, sparse_proxy_tag, row_major_tag) { typedef M matrix_type; typedef TRI triangular_restriction; typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK matrix
cm (m); typedef typename type_traits
::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign
(cm, prod (e1, e2), row_major_tag ()); #endif typename expression1_type::const_iterator1 it1 (e1 ().begin1 ()); typename expression1_type::const_iterator1 it1_end (e1 ().end1 ()); while (it1 != it1_end) { #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION typename expression1_type::const_iterator2 it2 (it1.begin ()); typename expression1_type::const_iterator2 it2_end (it1.end ()); #else typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ())); typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ())); #endif while (it2 != it2_end) { // row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ())); matrix_row
mr (e2 (), it2.index2 ()); typename matrix_row
::const_iterator itr (mr.begin ()); typename matrix_row
::const_iterator itr_end (mr.end ()); while (itr != itr_end) { if (triangular_restriction::other (it1.index1 (), itr.index ())) m (it1.index1 (), itr.index ()) += *it2 * *itr; ++ itr; } ++ it2; } ++ it1; } #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits
::epsilon () * merrorbound, internal_logic ()); #endif return m; } template
BOOST_UBLAS_INLINE M & axpy_prod (const matrix_expression
&e1, const matrix_expression
&e2, M &m, TRI, dense_proxy_tag, column_major_tag) { typedef M matrix_type; typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK matrix
cm (m); typedef typename type_traits
::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign
(cm, prod (e1, e2), column_major_tag ()); #endif size_type size1 (e2 ().size1 ()); size_type size2 (e2 ().size2 ()); for (size_type j = 0; j < size2; ++ j) for (size_type i = 0; i < size1; ++ i) column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i)); #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits
::epsilon () * merrorbound, internal_logic ()); #endif return m; } template
BOOST_UBLAS_INLINE M & axpy_prod (const matrix_expression
&e1, const matrix_expression
&e2, M &m, TRI, sparse_proxy_tag, column_major_tag) { typedef M matrix_type; typedef TRI triangular_restriction; typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK matrix
cm (m); typedef typename type_traits
::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign
(cm, prod (e1, e2), column_major_tag ()); #endif typename expression2_type::const_iterator2 it2 (e2 ().begin2 ()); typename expression2_type::const_iterator2 it2_end (e2 ().end2 ()); while (it2 != it2_end) { #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION typename expression2_type::const_iterator1 it1 (it2.begin ()); typename expression2_type::const_iterator1 it1_end (it2.end ()); #else typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ())); typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ())); #endif while (it1 != it1_end) { // column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ())); matrix_column
mc (e1 (), it1.index1 ()); typename matrix_column
::const_iterator itc (mc.begin ()); typename matrix_column
::const_iterator itc_end (mc.end ()); while (itc != itc_end) { if(triangular_restriction::other (itc.index (), it2.index2 ())) m (itc.index (), it2.index2 ()) += *it1 * *itc; ++ itc; } ++ it1; } ++ it2; } #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits
::epsilon () * merrorbound, internal_logic ()); #endif return m; } // Dispatcher template
BOOST_UBLAS_INLINE M & axpy_prod (const matrix_expression
&e1, const matrix_expression
&e2, M &m, TRI, bool init = true) { typedef typename M::value_type value_type; typedef typename M::storage_category storage_category; typedef typename M::orientation_category orientation_category; typedef TRI triangular_restriction; if (init) m.assign (zero_matrix
(e1 ().size1 (), e2 ().size2 ())); return axpy_prod (e1, e2, m, triangular_restriction (), storage_category (), orientation_category ()); } template
BOOST_UBLAS_INLINE M axpy_prod (const matrix_expression
&e1, const matrix_expression
&e2, TRI) { typedef M matrix_type; typedef TRI triangular_restriction; matrix_type m (e1 ().size1 (), e2 ().size2 ()); return axpy_prod (e1, e2, m, triangular_restriction (), true); } /** \brief computes
M += A X
or
M = A X
in an optimized fashion. \param e1 the matrix expression \c A \param e2 the matrix expression \c X \param m the result matrix \c M \param init a boolean parameter
axpy_prod(A, X, M, init)
implements the well known axpy-product. Setting \a init to \c true is equivalent to call
M.clear()
before
axpy_prod
. Currently \a init defaults to \c true, but this may change in the future. Up to now there are no specialisations. \ingroup blas3 \internal template parameters: \param M type of the result matrix \c M \param E1 type of a matrix expression \c A \param E2 type of a matrix expression \c X */ template
BOOST_UBLAS_INLINE M & axpy_prod (const matrix_expression
&e1, const matrix_expression
&e2, M &m, bool init = true) { typedef typename M::value_type value_type; typedef typename M::storage_category storage_category; typedef typename M::orientation_category orientation_category; if (init) m.assign (zero_matrix
(e1 ().size1 (), e2 ().size2 ())); return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ()); } template
BOOST_UBLAS_INLINE M axpy_prod (const matrix_expression
&e1, const matrix_expression
&e2) { typedef M matrix_type; matrix_type m (e1 ().size1 (), e2 ().size2 ()); return axpy_prod (e1, e2, m, full (), true); } template
BOOST_UBLAS_INLINE M & opb_prod (const matrix_expression
&e1, const matrix_expression
&e2, M &m, dense_proxy_tag, row_major_tag) { typedef M matrix_type; typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK matrix
cm (m); typedef typename type_traits
::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign
(cm, prod (e1, e2), row_major_tag ()); #endif size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ())); for (size_type k = 0; k < size; ++ k) { vector
ce1 (column (e1 (), k)); vector
re2 (row (e2 (), k)); m.plus_assign (outer_prod (ce1, re2)); } #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits
::epsilon () * merrorbound, internal_logic ()); #endif return m; } template
BOOST_UBLAS_INLINE M & opb_prod (const matrix_expression
&e1, const matrix_expression
&e2, M &m, dense_proxy_tag, column_major_tag) { typedef M matrix_type; typedef const E1 expression1_type; typedef const E2 expression2_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK matrix
cm (m); typedef typename type_traits
::real_type real_type; real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2)); indexing_matrix_assign
(cm, prod (e1, e2), column_major_tag ()); #endif size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ())); for (size_type k = 0; k < size; ++ k) { vector
ce1 (column (e1 (), k)); vector
re2 (row (e2 (), k)); m.plus_assign (outer_prod (ce1, re2)); } #if BOOST_UBLAS_TYPE_CHECK BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits
::epsilon () * merrorbound, internal_logic ()); #endif return m; } // Dispatcher /** \brief computes
M += A X
or
M = A X
in an optimized fashion. \param e1 the matrix expression \c A \param e2 the matrix expression \c X \param m the result matrix \c M \param init a boolean parameter
opb_prod(A, X, M, init)
implements the well known axpy-product. Setting \a init to \c true is equivalent to call
M.clear()
before
opb_prod
. Currently \a init defaults to \c true, but this may change in the future. This function may give a speedup if \c A has less columns than rows, because the product is computed as a sum of outer products. \ingroup blas3 \internal template parameters: \param M type of the result matrix \c M \param E1 type of a matrix expression \c A \param E2 type of a matrix expression \c X */ template
BOOST_UBLAS_INLINE M & opb_prod (const matrix_expression
&e1, const matrix_expression
&e2, M &m, bool init = true) { typedef typename M::value_type value_type; typedef typename M::storage_category storage_category; typedef typename M::orientation_category orientation_category; if (init) m.assign (zero_matrix
(e1 ().size1 (), e2 ().size2 ())); return opb_prod (e1, e2, m, storage_category (), orientation_category ()); } template
BOOST_UBLAS_INLINE M opb_prod (const matrix_expression
&e1, const matrix_expression
&e2) { typedef M matrix_type; matrix_type m (e1 ().size1 (), e2 ().size2 ()); return opb_prod (e1, e2, m, true); } }}} #endif
operation.hpp
Page URL
File URL
Prev
14/26
Next
Download
( 33 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.