DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_BANDED_ #define _BOOST_UBLAS_BANDED_ #include
#include
// Iterators based on ideas of Jeremy Siek namespace boost { namespace numeric { namespace ublas { // Array based banded matrix class template
class banded_matrix: public matrix_container
> { typedef T *pointer; typedef L layout_type; typedef banded_matrix
self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container
::operator (); #endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; typedef const matrix_reference
const_closure_type; typedef matrix_reference
closure_type; typedef vector
vector_temporary_type; typedef matrix
matrix_temporary_type; // general sub-matrix typedef packed_tag storage_category; typedef typename L::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE banded_matrix (): matrix_container
(), size1_ (0), size2_ (0), lower_ (0), upper_ (0), data_ (0) {} BOOST_UBLAS_INLINE banded_matrix (size_type size1, size_type size2, size_type lower = 0, size_type upper = 0): matrix_container
(), size1_ (size1), size2_ (size2), lower_ (lower), upper_ (upper), data_ ((std::max) (size1, size2) * (lower + 1 + upper)) { } BOOST_UBLAS_INLINE banded_matrix (size_type size1, size_type size2, size_type lower, size_type upper, const array_type &data): matrix_container
(), size1_ (size1), size2_ (size2), lower_ (lower), upper_ (upper), data_ (data) {} BOOST_UBLAS_INLINE banded_matrix (const banded_matrix &m): matrix_container
(), size1_ (m.size1_), size2_ (m.size2_), lower_ (m.lower_), upper_ (m.upper_), data_ (m.data_) {} template
BOOST_UBLAS_INLINE banded_matrix (const matrix_expression
&ae, size_type lower = 0, size_type upper = 0): matrix_container
(), size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), lower_ (lower), upper_ (upper), data_ ((std::max) (size1_, size2_) * (lower_ + 1 + upper_)) { matrix_assign
(*this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } BOOST_UBLAS_INLINE size_type lower () const { return lower_; } BOOST_UBLAS_INLINE size_type upper () const { return upper_; } // Storage accessors BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, size_type lower = 0, size_type upper = 0, bool preserve = true) { if (preserve) { self_type temporary (size1, size2, lower, upper); detail::matrix_resize_preserve
(*this, temporary); } else { data ().resize ((std::max) (size1, size2) * (lower + 1 + upper)); size1_ = size1; size2_ = size2; lower_ = lower; upper_ = upper; } } BOOST_UBLAS_INLINE void resize_packed_preserve (size_type size1, size_type size2, size_type lower = 0, size_type upper = 0) { size1_ = size1; size2_ = size2; lower_ = lower; upper_ = upper; data ().resize ((std::max) (size1, size2) * (lower + 1 + upper), value_type ()); } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED const size_type k = (std::max) (i, j); const size_type l = lower_ + j - i; if (k < (std::max) (size1_, size2_) && l < lower_ + 1 + upper_) return data () [layout_type::element (k, (std::max) (size1_, size2_), l, lower_ + 1 + upper_)]; #else const size_type k = j; const size_type l = upper_ + i - j; if (k < size2_ && l < lower_ + 1 + upper_) return data () [layout_type::element (k, size2_, l, lower_ + 1 + upper_)]; #endif return zero_; } BOOST_UBLAS_INLINE reference at_element (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED const size_type k = (std::max) (i, j); const size_type l = lower_ + j - i; return data () [layout_type::element (k, (std::max) (size1_, size2_), l, lower_ + 1 + upper_)]; #else const size_type k = j; const size_type l = upper_ + i - j; return data () [layout_type::element (k, size2_, l, lower_ + 1 + upper_)]; #endif } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED const size_type k = (std::max) (i, j); const size_type l = lower_ + j - i; if (! (k < (std::max) (size1_, size2_) && l < lower_ + 1 + upper_) ) { bad_index ().raise (); // NEVER reached } return data () [layout_type::element (k, (std::max) (size1_, size2_), l, lower_ + 1 + upper_)]; #else const size_type k = j; const size_type l = upper_ + i - j; if (! (k < size2_ && l < lower_ + 1 + upper_) ) { bad_index ().raise (); // NEVER reached } return data () [layout_type::element (k, size2_, l, lower_ + 1 + upper_)]; #endif } // Element assignment BOOST_UBLAS_INLINE reference insert_element (size_type i, size_type j, const_reference t) { return (operator () (i, j) = t); } BOOST_UBLAS_INLINE void erase_element (size_type i, size_type j) { operator () (i, j) = value_type/*zero*/(); } // Zeroing BOOST_UBLAS_INLINE void clear () { std::fill (data ().begin (), data ().end (), value_type/*zero*/()); } // Assignment BOOST_UBLAS_INLINE banded_matrix &operator = (const banded_matrix &m) { size1_ = m.size1_; size2_ = m.size2_; lower_ = m.lower_; upper_ = m.upper_; data () = m.data (); return *this; } BOOST_UBLAS_INLINE banded_matrix &assign_temporary (banded_matrix &m) { swap (m); return *this; } template
BOOST_UBLAS_INLINE banded_matrix &operator = (const matrix_expression
&ae) { self_type temporary (ae, lower_, upper_); return assign_temporary (temporary); } template
BOOST_UBLAS_INLINE banded_matrix &assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE banded_matrix& operator += (const matrix_expression
&ae) { self_type temporary (*this + ae, lower_, upper_); return assign_temporary (temporary); } template
BOOST_UBLAS_INLINE banded_matrix &plus_assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE banded_matrix& operator -= (const matrix_expression
&ae) { self_type temporary (*this - ae, lower_, upper_); return assign_temporary (temporary); } template
BOOST_UBLAS_INLINE banded_matrix &minus_assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE banded_matrix& operator *= (const AT &at) { matrix_assign_scalar
(*this, at); return *this; } template
BOOST_UBLAS_INLINE banded_matrix& operator /= (const AT &at) { matrix_assign_scalar
(*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (banded_matrix &m) { if (this != &m) { std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); std::swap (lower_, m.lower_); std::swap (upper_, m.upper_); data ().swap (m.data ()); } } BOOST_UBLAS_INLINE friend void swap (banded_matrix &m1, banded_matrix &m2) { m1.swap (m2); } // Iterator types #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1
iterator1; typedef indexed_iterator2
iterator2; typedef indexed_const_iterator1
const_iterator1; typedef indexed_const_iterator2
const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1
const_reverse_iterator1; typedef reverse_iterator_base1
reverse_iterator1; typedef reverse_iterator_base2
const_reverse_iterator2; typedef reverse_iterator_base2
reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (rank == 1) { size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0)); i = (std::max) (i, lower_i); size_type upper_i = (std::min) (j + 1 + lower_, size1_); i = (std::min) (i, upper_i); } return const_iterator1 (*this, i, j); } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) { size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0)); i = (std::max) (i, lower_i); size_type upper_i = (std::min) (j + 1 + lower_, size1_); i = (std::min) (i, upper_i); } return iterator1 (*this, i, j); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (rank == 1) { size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0)); j = (std::max) (j, lower_j); size_type upper_j = (std::min) (i + 1 + upper_, size2_); j = (std::min) (j, upper_j); } return const_iterator2 (*this, i, j); } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) { size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0)); j = (std::max) (j, lower_j); size_type upper_j = (std::min) (i + 1 + upper_, size2_); j = (std::min) (j, upper_j); } return iterator2 (*this, i, j); } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference
, public random_access_iterator_base
{ public: typedef typename banded_matrix::value_type value_type; typedef typename banded_matrix::difference_type difference_type; typedef typename banded_matrix::const_reference reference; typedef const typename banded_matrix::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference
(), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, size_type it1, size_type it2): container_const_reference
(m), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference
(it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return (*this) ().find2 (1, it1_, 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return (*this) ().find2 (1, it1_, (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference
::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: size_type it1_; size_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1_, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference
, public random_access_iterator_base
{ public: typedef typename banded_matrix::value_type value_type; typedef typename banded_matrix::difference_type difference_type; typedef typename banded_matrix::reference reference; typedef typename banded_matrix::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference
(), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, size_type it1, size_type it2): container_reference
(m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return (*this) ().at_element (it1_, it2_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return (*this) ().find2 (1, it1_, 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return (*this) ().find2 (1, it1_, (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference
::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: size_type it1_; size_type it2_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1_, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference
, public random_access_iterator_base
{ public: typedef typename banded_matrix::value_type value_type; typedef typename banded_matrix::difference_type difference_type; typedef typename banded_matrix::const_reference reference; typedef const typename banded_matrix::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference
(), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, size_type it1, size_type it2): container_const_reference
(m), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference
(it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return (*this) ().find1 (1, 0, it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference
::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: size_type it1_; size_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2_); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference
, public random_access_iterator_base
{ public: typedef typename banded_matrix::value_type value_type; typedef typename banded_matrix::difference_type difference_type; typedef typename banded_matrix::reference reference; typedef typename banded_matrix::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference
(), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, size_type it1, size_type it2): container_reference
(m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return (*this) ().at_element (it1_, it2_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return (*this) ().find1 (1, 0, it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference
::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: size_type it1_; size_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2_); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: size_type size1_; size_type size2_; size_type lower_; size_type upper_; array_type data_; typedef const value_type const_value_type; static const_value_type zero_; }; template
typename banded_matrix
::const_value_type banded_matrix
::zero_ = value_type/*zero*/(); // Diagonal matrix class template
class diagonal_matrix: public banded_matrix
{ public: typedef typename A::size_type size_type; typedef banded_matrix
matrix_type; typedef A array_type; // Construction and destruction BOOST_UBLAS_INLINE diagonal_matrix (): matrix_type () {} BOOST_UBLAS_INLINE diagonal_matrix (size_type size): matrix_type (size, size) {} BOOST_UBLAS_INLINE diagonal_matrix (size_type size, const array_type& data): matrix_type (size, size, 0, 0, data) {} BOOST_UBLAS_INLINE diagonal_matrix (size_type size1, size_type size2): matrix_type (size1, size2) {} template
BOOST_UBLAS_INLINE diagonal_matrix (const matrix_expression
&ae): matrix_type (ae) {} BOOST_UBLAS_INLINE ~diagonal_matrix () {} // Assignment BOOST_UBLAS_INLINE diagonal_matrix &operator = (const diagonal_matrix &m) { matrix_type::operator = (m); return *this; } template
BOOST_UBLAS_INLINE diagonal_matrix &operator = (const matrix_expression
&ae) { matrix_type::operator = (ae); return *this; } }; // Banded matrix adaptor class template
class banded_adaptor: public matrix_expression
> { typedef banded_adaptor
self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_expression
::operator (); #endif typedef const M const_matrix_type; typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_
, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_
, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef const self_type const_closure_type; typedef self_type closure_type; // Replaced by _temporary_traits to avoid type requirements on M //typedef typename M::vector_temporary_type vector_temporary_type; //typedef typename M::matrix_temporary_type matrix_temporary_type; typedef typename storage_restrict_traits
::storage_category storage_category; typedef typename M::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE banded_adaptor (matrix_type &data, size_type lower = 0, size_type upper = 0): matrix_expression
(), data_ (data), lower_ (lower), upper_ (upper) {} BOOST_UBLAS_INLINE banded_adaptor (const banded_adaptor &m): matrix_expression
(), data_ (m.data_), lower_ (m.lower_), upper_ (m.upper_) {} // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return data_.size1 (); } BOOST_UBLAS_INLINE size_type size2 () const { return data_.size2 (); } BOOST_UBLAS_INLINE size_type lower () const { return lower_; } BOOST_UBLAS_INLINE size_type upper () const { return upper_; } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = lower_ + j - i; if (k < (std::max) (size1 (), size2 ()) && l < lower_ + 1 + upper_) return data () (i, j); #else size_type k = j; size_type l = upper_ + i - j; if (k < size2 () && l < lower_ + 1 + upper_) return data () (i, j); #endif return zero_; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = lower_ + j - i; if (k < (std::max) (size1 (), size2 ()) && l < lower_ + 1 + upper_) return data () (i, j); #else size_type k = j; size_type l = upper_ + i - j; if (k < size2 () && l < lower_ + 1 + upper_) return data () (i, j); #endif #ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER bad_index ().raise (); #endif return const_cast
(zero_); } #else BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = lower_ + j - i; if (k < (std::max) (size1 (), size2 ()) && l < lower_ + 1 + upper_) return data () (i, j); #else size_type k = j; size_type l = upper_ + i - j; if (k < size2 () && l < lower_ + 1 + upper_) return data () (i, j); #endif #ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER bad_index ().raise (); #endif return const_cast
(zero_); } #endif // Assignment BOOST_UBLAS_INLINE banded_adaptor &operator = (const banded_adaptor &m) { matrix_assign
(*this, m); return *this; } BOOST_UBLAS_INLINE banded_adaptor &assign_temporary (banded_adaptor &m) { *this = m; return *this; } template
BOOST_UBLAS_INLINE banded_adaptor &operator = (const matrix_expression
&ae) { matrix_assign
(*this, matrix
(ae)); return *this; } template
BOOST_UBLAS_INLINE banded_adaptor &assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE banded_adaptor& operator += (const matrix_expression
&ae) { matrix_assign
(*this, matrix
(*this + ae)); return *this; } template
BOOST_UBLAS_INLINE banded_adaptor &plus_assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE banded_adaptor& operator -= (const matrix_expression
&ae) { matrix_assign
(*this, matrix
(*this - ae)); return *this; } template
BOOST_UBLAS_INLINE banded_adaptor &minus_assign (const matrix_expression
&ae) { matrix_assign
(*this, ae); return *this; } template
BOOST_UBLAS_INLINE banded_adaptor& operator *= (const AT &at) { matrix_assign_scalar
(*this, at); return *this; } template
BOOST_UBLAS_INLINE banded_adaptor& operator /= (const AT &at) { matrix_assign_scalar
(*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const banded_adaptor &ba) const { return (*this).data ().same_closure (ba.data ()); } // Swapping BOOST_UBLAS_INLINE void swap (banded_adaptor &m) { if (this != &m) { BOOST_UBLAS_CHECK (lower_ == m.lower_, bad_size ()); BOOST_UBLAS_CHECK (upper_ == m.upper_, bad_size ()); matrix_swap
(*this, m); } } BOOST_UBLAS_INLINE friend void swap (banded_adaptor &m1, banded_adaptor &m2) { m1.swap (m2); } // Iterator types private: // Use the matrix iterator typedef typename M::const_iterator1 const_subiterator1_type; typedef typename boost::mpl::if_
, typename M::const_iterator1, typename M::iterator1>::type subiterator1_type; typedef typename M::const_iterator2 const_subiterator2_type; typedef typename boost::mpl::if_
, typename M::const_iterator2, typename M::iterator2>::type subiterator2_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1
iterator1; typedef indexed_iterator2
iterator2; typedef indexed_const_iterator1
const_iterator1; typedef indexed_const_iterator2
const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1
const_reverse_iterator1; typedef reverse_iterator_base1
reverse_iterator1; typedef reverse_iterator_base2
const_reverse_iterator2; typedef reverse_iterator_base2
reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (rank == 1) { size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0)); i = (std::max) (i, lower_i); size_type upper_i = (std::min) (j + 1 + lower_, size1 ()); i = (std::min) (i, upper_i); } return const_iterator1 (*this, data ().find1 (rank, i, j)); } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) { size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0)); i = (std::max) (i, lower_i); size_type upper_i = (std::min) (j + 1 + lower_, size1 ()); i = (std::min) (i, upper_i); } return iterator1 (*this, data ().find1 (rank, i, j)); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (rank == 1) { size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0)); j = (std::max) (j, lower_j); size_type upper_j = (std::min) (i + 1 + upper_, size2 ()); j = (std::min) (j, upper_j); } return const_iterator2 (*this, data ().find2 (rank, i, j)); } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) { size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0)); j = (std::max) (j, lower_j); size_type upper_j = (std::min) (i + 1 + upper_, size2 ()); j = (std::min) (j, upper_j); } return iterator2 (*this, data ().find2 (rank, i, j)); } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference
, public random_access_iterator_base
::iterator_category, const_iterator1, value_type> { public: typedef typename const_subiterator1_type::value_type value_type; typedef typename const_subiterator1_type::difference_type difference_type; typedef typename const_subiterator1_type::reference reference; typedef typename const_subiterator1_type::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference
(), it1_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, const const_subiterator1_type &it1): container_const_reference
(m), it1_ (it1) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference
(it ()), it1_ (it.it1_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = (*this) ().lower () + j - i; if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it1_; #else size_type k = j; size_type l = (*this) ().upper () + i - j; if (k < (*this) ().size2 () && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it1_; #endif return (*this) () (i, j); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return (*this) ().find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return (*this) ().find2 (1, index1 (), (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it1_.index2 (); } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference
::assign (&it ()); it1_ = it.it1_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ < it.it1_; } private: const_subiterator1_type it1_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference
, public random_access_iterator_base
::iterator_category, iterator1, value_type> { public: typedef typename subiterator1_type::value_type value_type; typedef typename subiterator1_type::difference_type difference_type; typedef typename subiterator1_type::reference reference; typedef typename subiterator1_type::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference
(), it1_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, const subiterator1_type &it1): container_reference
(m), it1_ (it1) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = (*this) ().lower () + j - i; if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it1_; #else size_type k = j; size_type l = (*this) ().upper () + i - j; if (k < (*this) ().size2 () && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it1_; #endif return (*this) () (i, j); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return (*this) ().find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return (*this) ().find2 (1, index1 (), (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it1_.index2 (); } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference
::assign (&it ()); it1_ = it.it1_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ < it.it1_; } private: subiterator1_type it1_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference
, public random_access_iterator_base
{ public: typedef typename iterator_restrict_traits
::iterator_category iterator_category; typedef typename const_subiterator2_type::value_type value_type; typedef typename const_subiterator2_type::difference_type difference_type; typedef typename const_subiterator2_type::reference reference; typedef typename const_subiterator2_type::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference
(), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, const const_subiterator2_type &it2): container_const_reference
(m), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference
(it ()), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = (*this) ().lower () + j - i; if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it2_; #else size_type k = j; size_type l = (*this) ().upper () + i - j; if (k < (*this) ().size2 () && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it2_; #endif return (*this) () (i, j); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return (*this) ().find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it2_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index2 (); } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference
::assign (&it ()); it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ < it.it2_; } private: const_subiterator2_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2 ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference
, public random_access_iterator_base
::iterator_category, iterator2, value_type> { public: typedef typename subiterator2_type::value_type value_type; typedef typename subiterator2_type::difference_type difference_type; typedef typename subiterator2_type::reference reference; typedef typename subiterator2_type::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference
(), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, const subiterator2_type &it2): container_reference
(m), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { size_type i = index1 (); size_type j = index2 (); BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ()); #ifdef BOOST_UBLAS_OWN_BANDED size_type k = (std::max) (i, j); size_type l = (*this) ().lower () + j - i; if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it2_; #else size_type k = j; size_type l = (*this) ().upper () + i - j; if (k < (*this) ().size2 () && l < (*this) ().lower () + 1 + (*this) ().upper ()) return *it2_; #endif return (*this) () (i, j); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return (*this) ().find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it2_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index2 (); } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference
::assign (&it ()); it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ < it.it2_; } private: subiterator2_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2 ()); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: matrix_closure_type data_; size_type lower_; size_type upper_; typedef const value_type const_value_type; static const_value_type zero_; }; // Specialization for temporary_traits template
struct vector_temporary_traits< banded_adaptor
> : vector_temporary_traits< M > {} ; template
struct vector_temporary_traits< const banded_adaptor
> : vector_temporary_traits< M > {} ; template
struct matrix_temporary_traits< banded_adaptor
> : matrix_temporary_traits< M > {} ; template
struct matrix_temporary_traits< const banded_adaptor
> : matrix_temporary_traits< M > {} ; template
typename banded_adaptor
::const_value_type banded_adaptor
::zero_ = value_type/*zero*/(); // Diagonal matrix adaptor class template
class diagonal_adaptor: public banded_adaptor
{ public: typedef M matrix_type; typedef banded_adaptor
adaptor_type; // Construction and destruction BOOST_UBLAS_INLINE diagonal_adaptor (): adaptor_type () {} BOOST_UBLAS_INLINE diagonal_adaptor (matrix_type &data): adaptor_type (data) {} BOOST_UBLAS_INLINE ~diagonal_adaptor () {} // Assignment BOOST_UBLAS_INLINE diagonal_adaptor &operator = (const diagonal_adaptor &m) { adaptor_type::operator = (m); return *this; } template
BOOST_UBLAS_INLINE diagonal_adaptor &operator = (const matrix_expression
&ae) { adaptor_type::operator = (ae); return *this; } }; }}} #endif
banded.hpp
Page URL
File URL
Prev 1/26
Next
Download
( 73 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.