DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP #include
#include
#include
#include
#include
#include
namespace boost{ namespace math{ namespace tools{ template
class eps_tolerance { public: eps_tolerance(unsigned bits) { BOOST_MATH_STD_USING eps = (std::max)(T(ldexp(1.0F, 1-bits)), 2 * tools::epsilon
()); } bool operator()(const T& a, const T& b) { BOOST_MATH_STD_USING return (fabs(a - b) / (std::min)(fabs(a), fabs(b))) <= eps; } private: T eps; }; struct equal_floor { equal_floor(){} template
bool operator()(const T& a, const T& b) { BOOST_MATH_STD_USING return floor(a) == floor(b); } }; struct equal_ceil { equal_ceil(){} template
bool operator()(const T& a, const T& b) { BOOST_MATH_STD_USING return ceil(a) == ceil(b); } }; struct equal_nearest_integer { equal_nearest_integer(){} template
bool operator()(const T& a, const T& b) { BOOST_MATH_STD_USING return floor(a + 0.5f) == floor(b + 0.5f); } }; namespace detail{ template
void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd) { // // Given a point c inside the existing enclosing interval // [a, b] sets a = c if f(c) == 0, otherwise finds the new // enclosing interval: either [a, c] or [c, b] and sets // d and fd to the point that has just been removed from // the interval. In other words d is the third best guess // to the root. // BOOST_MATH_STD_USING // For ADL of std math functions T tol = tools::epsilon
() * 2; // // If the interval [a,b] is very small, or if c is too close // to one end of the interval then we need to adjust the // location of c accordingly: // if((b - a) < 2 * tol * a) { c = a + (b - a) / 2; } else if(c <= a + fabs(a) * tol) { c = a * (1 + tol); } else if(c >= b - fabs(b) * tol) { c = b * (1 - tol); } // // OK, lets invoke f(c): // T fc = f(c); // // if we have a zero then we have an exact solution to the root: // if(fc == 0) { a = c; fa = 0; d = 0; fd = 0; return; } // // Non-zero fc, update the interval: // if(boost::math::sign(fa) * boost::math::sign(fc) < 0) { d = b; fd = fb; b = c; fb = fc; } else { d = a; fd = fa; a = c; fa= fc; } } template
inline T safe_div(T num, T denom, T r) { // // return num / denom without overflow, // return r if overflow would occur. // BOOST_MATH_STD_USING // For ADL of std math functions if(fabs(denom) < 1) { if(fabs(denom * tools::max_value
()) <= fabs(num)) return r; } return num / denom; } template
inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb) { // // Performs standard secant interpolation of [a,b] given // function evaluations f(a) and f(b). Performs a bisection // if secant interpolation would leave us very close to either // a or b. Rationale: we only call this function when at least // one other form of interpolation has already failed, so we know // that the function is unlikely to be smooth with a root very // close to a or b. // BOOST_MATH_STD_USING // For ADL of std math functions T tol = tools::epsilon
() * 5; T c = a - (fa / (fb - fa)) * (b - a); if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol)) return (a + b) / 2; return c; } template
T quadratic_interpolate(const T& a, const T& b, T const& d, const T& fa, const T& fb, T const& fd, unsigned count) { // // Performs quadratic interpolation to determine the next point, // takes count Newton steps to find the location of the // quadratic polynomial. // // Point d must lie outside of the interval [a,b], it is the third // best approximation to the root, after a and b. // // Note: this does not guarentee to find a root // inside [a, b], so we fall back to a secant step should // the result be out of range. // // Start by obtaining the coefficients of the quadratic polynomial: // T B = safe_div(fb - fa, b - a, tools::max_value
()); T A = safe_div(fd - fb, d - b, tools::max_value
()); A = safe_div(A - B, d - a, T(0)); if(a == 0) { // failure to determine coefficients, try a secant step: return secant_interpolate(a, b, fa, fb); } // // Determine the starting point of the Newton steps: // T c; if(boost::math::sign(A) * boost::math::sign(fa) > 0) { c = a; } else { c = b; } // // Take the Newton steps: // for(unsigned i = 1; i <= count; ++i) { //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a); c -= safe_div(fa+(B+A*(c-b))*(c-a), (B + A * (2 * c - a - b)), 1 + c - a); } if((c <= a) || (c >= b)) { // Oops, failure, try a secant step: c = secant_interpolate(a, b, fa, fb); } return c; } template
T cubic_interpolate(const T& a, const T& b, const T& d, const T& e, const T& fa, const T& fb, const T& fd, const T& fe) { // // Uses inverse cubic interpolation of f(x) at points // [a,b,d,e] to obtain an approximate root of f(x). // Points d and e lie outside the interval [a,b] // and are the third and forth best approximations // to the root that we have found so far. // // Note: this does not guarentee to find a root // inside [a, b], so we fall back to quadratic // interpolation in case of an erroneous result. // BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb << " fd = " << fd << " fe = " << fe); T q11 = (d - e) * fd / (fe - fd); T q21 = (b - d) * fb / (fd - fb); T q31 = (a - b) * fa / (fb - fa); T d21 = (b - d) * fd / (fd - fb); T d31 = (a - b) * fb / (fb - fa); BOOST_MATH_INSTRUMENT_CODE( "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31 << " d21 = " << d21 << " d31 = " << d31); T q22 = (d21 - q11) * fb / (fe - fb); T q32 = (d31 - q21) * fa / (fd - fa); T d32 = (d31 - q21) * fd / (fd - fa); T q33 = (d32 - q22) * fa / (fe - fa); T c = q31 + q32 + q33 + a; BOOST_MATH_INSTRUMENT_CODE( "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32 << " q33 = " << q33 << " c = " << c); if((c <= a) || (c >= b)) { // Out of bounds step, fall back to quadratic interpolation: c = quadratic_interpolate(a, b, d, fa, fb, fd, 3); BOOST_MATH_INSTRUMENT_CODE( "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c); } return c; } } // namespace detail template
std::pair
toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) { // // Main entry point and logic for Toms Algorithm 748 // root finder. // BOOST_MATH_STD_USING // For ADL of std math functions static const char* function = "boost::math::tools::toms748_solve<%1%>"; boost::uintmax_t count = max_iter; T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe; static const T mu = 0.5f; // initialise a, b and fa, fb: a = ax; b = bx; if(a >= b) policies::raise_domain_error( function, "Parameters a and b out of order: a=%1%", a, pol); fa = fax; fb = fbx; if(tol(a, b) || (fa == 0) || (fb == 0)) { max_iter = 0; if(fa == 0) b = a; else if(fb == 0) a = b; return std::make_pair(a, b); } if(boost::math::sign(fa) * boost::math::sign(fb) > 0) policies::raise_domain_error( function, "Parameters a and b do not bracket the root: a=%1%", a, pol); // dummy value for fd, e and fe: fe = e = fd = 1e5F; if(fa != 0) { // // On the first step we take a secant step: // c = detail::secant_interpolate(a, b, fa, fb); detail::bracket(f, a, b, c, fa, fb, d, fd); --count; BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); if(count && (fa != 0) && !tol(a, b)) { // // On the second step we take a quadratic interpolation: // c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); e = d; fe = fd; detail::bracket(f, a, b, c, fa, fb, d, fd); --count; BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); } } while(count && (fa != 0) && !tol(a, b)) { // save our brackets: a0 = a; b0 = b; // // Starting with the third step taken // we can use either quadratic or cubic interpolation. // Cubic interpolation requires that all four function values // fa, fb, fd, and fe are distinct, should that not be the case // then variable prof will get set to true, and we'll end up // taking a quadratic step instead. // T min_diff = tools::min_value
() * 32; bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); if(prof) { c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!"); } else { c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); } // // re-bracket, and check for termination: // e = d; fe = fd; detail::bracket(f, a, b, c, fa, fb, d, fd); if((0 == --count) || (fa == 0) || tol(a, b)) break; BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); // // Now another interpolated step: // prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); if(prof) { c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3); BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!"); } else { c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); } // // Bracket again, and check termination condition, update e: // detail::bracket(f, a, b, c, fa, fb, d, fd); if((0 == --count) || (fa == 0) || tol(a, b)) break; BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); // // Now we take a double-length secant step: // if(fabs(fa) < fabs(fb)) { u = a; fu = fa; } else { u = b; fu = fb; } c = u - 2 * (fu / (fb - fa)) * (b - a); if(fabs(c - u) > (b - a) / 2) { c = a + (b - a) / 2; } // // Bracket again, and check termination condition: // e = d; fe = fd; detail::bracket(f, a, b, c, fa, fb, d, fd); if((0 == --count) || (fa == 0) || tol(a, b)) break; BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); // // And finally... check to see if an additional bisection step is // to be taken, we do this if we're not converging fast enough: // if((b - a) < mu * (b0 - a0)) continue; // // bracket again on a bisection: // e = d; fe = fd; detail::bracket(f, a, b, a + (b - a) / 2, fa, fb, d, fd); --count; BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!"); BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); } // while loop max_iter -= count; if(fa == 0) { b = a; } else if(fb == 0) { a = b; } return std::make_pair(a, b); } template
inline std::pair
toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter) { return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>()); } template
inline std::pair
toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) { max_iter -= 2; std::pair
r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol); max_iter += 2; return r; } template
inline std::pair
toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter) { return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>()); } template
std::pair
bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) { BOOST_MATH_STD_USING static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>"; // // Set up inital brackets: // T a = guess; T b = a; T fa = f(a); T fb = fa; // // Set up invocation count: // boost::uintmax_t count = max_iter - 1; if((fa < 0) == (guess < 0 ? !rising : rising)) { // // Zero is to the right of b, so walk upwards // until we find it: // while((boost::math::sign)(fb) == (boost::math::sign)(fa)) { if(count == 0) policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol); // // Heuristic: every 20 iterations we double the growth factor in case the // initial guess was *really* bad ! // if((max_iter - count) % 20 == 0) factor *= 2; // // Now go ahead and move are guess by "factor": // a = b; fa = fb; b *= factor; fb = f(b); --count; BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); } } else { // // Zero is to the left of a, so walk downwards // until we find it: // while((boost::math::sign)(fb) == (boost::math::sign)(fa)) { if(fabs(a) < tools::min_value
()) { // Escape route just in case the answer is zero! max_iter -= count; max_iter += 1; return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0)); } if(count == 0) policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol); // // Heuristic: every 20 iterations we double the growth factor in case the // initial guess was *really* bad ! // if((max_iter - count) % 20 == 0) factor *= 2; // // Now go ahead and move are guess by "factor": // b = a; fb = fa; a /= factor; fa = f(a); --count; BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); } } max_iter -= count; max_iter += 1; std::pair
r = toms748_solve( f, (a < 0 ? b : a), (a < 0 ? a : b), (a < 0 ? fb : fa), (a < 0 ? fa : fb), tol, count, pol); max_iter += count; BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count); return r; } template
inline std::pair
bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter) { return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>()); } } // namespace tools } // namespace math } // namespace boost #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
toms748_solve.hpp
Page URL
File URL
Prev
16/19
Next
Download
( 16 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.