DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// Copyright (c) 2006 Xiaogang Zhang // Copyright (c) 2006 John Maddock // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // History: // XZ wrote the original of this file as part of the Google // Summer of Code 2006. JM modified it to fit into the // Boost.Math conceptual framework better, and to correctly // handle the various corner cases. // #ifndef BOOST_MATH_ELLINT_3_HPP #define BOOST_MATH_ELLINT_3_HPP #include
#include
#include
#include
#include
#include
#include
#include
// Elliptic integrals (complete and incomplete) of the third kind // Carlson, Numerische Mathematik, vol 33, 1 (1979) namespace boost { namespace math { template
typename tools::promote_args
::type ellint_3(T1 k, T2 v, T3 phi, const Policy& pol); namespace detail{ template
T ellint_pi_imp(T v, T k, T vc, const Policy& pol); // Elliptic integral (Legendre form) of the third kind template
T ellint_pi_imp(T v, T phi, T k, T vc, const Policy& pol) { // Note vc = 1-v presumably without cancellation error. T value, x, y, z, p, t; BOOST_MATH_STD_USING using namespace boost::math::tools; using namespace boost::math::constants; static const char* function = "boost::math::ellint_3<%1%>(%1%,%1%,%1%)"; if (abs(k) > 1) { return policies::raise_domain_error
(function, "Got k = %1%, function requires |k| <= 1", k, pol); } T sphi = sin(fabs(phi)); if(v > 1 / (sphi * sphi)) { // Complex result is a domain error: return policies::raise_domain_error
(function, "Got v = %1%, but result is complex for v > 1 / sin^2(phi)", v, pol); } // Special cases first: if(v == 0) { // A&S 17.7.18 & 19 return (k == 0) ? phi : ellint_f_imp(phi, k, pol); } if(phi == constants::pi
() / 2) { // Have to filter this case out before the next // special case, otherwise we might get an infinity from // tan(phi). // Also note that since we can't represent PI/2 exactly // in a T, this is a bit of a guess as to the users true // intent... // return ellint_pi_imp(v, k, vc, pol); } if(k == 0) { // A&S 17.7.20: if(v < 1) { T vcr = sqrt(vc); return atan(vcr * tan(phi)) / vcr; } else if(v == 1) { return tan(phi); } else { // v > 1: T vcr = sqrt(-vc); T arg = vcr * tan(phi); return (boost::math::log1p(arg, pol) - boost::math::log1p(-arg, pol)) / (2 * vcr); } } if(v < 0) { // // If we don't shift to 0 <= v <= 1 we get // cancellation errors later on. Use // A&S 17.7.15/16 to shift to v > 0: // T k2 = k * k; T N = (k2 - v) / (1 - v); T Nm1 = (1 - k2) / (1 - v); T p2 = sqrt(-v * (k2 - v) / (1 - v)); T delta = sqrt(1 - k2 * sphi * sphi); T result = ellint_pi_imp(N, phi, k, Nm1, pol); result *= sqrt(Nm1 * (1 - k2 / N)); result += ellint_f_imp(phi, k, pol) * k2 / p2; result += atan((p2/2) * sin(2 * phi) / delta); result /= sqrt((1 - v) * (1 - k2 / v)); return result; } #if 0 // disabled but retained for future reference: see below. if(v > 1) { // // If v > 1 we can use the identity in A&S 17.7.7/8 // to shift to 0 <= v <= 1. Unfortunately this // identity appears only to function correctly when // 0 <= phi <= pi/2, but it's when phi is outside that // range that we really need it: That's when // Carlson's formula fails, and what's more the periodicity // reduction used below on phi doesn't work when v > 1. // // So we're stuck... the code is archived here in case // some bright spart can figure out the fix. // T k2 = k * k; T N = k2 / v; T Nm1 = (v - k2) / v; T p1 = sqrt((-vc) * (1 - k2 / v)); T delta = sqrt(1 - k2 * sphi * sphi); // // These next two terms have a large amount of cancellation // so it's not clear if this relation is useable even if // the issues with phi > pi/2 can be fixed: // T result = -ellint_pi_imp(N, phi, k, Nm1); result += ellint_f_imp(phi, k); // // This log term gives the complex result when // n > 1/sin^2(phi) // However that case is dealt with as an error above, // so we should always get a real result here: // result += log((delta + p1 * tan(phi)) / (delta - p1 * tan(phi))) / (2 * p1); return result; } #endif // Carlson's algorithm works only for |phi| <= pi/2, // use the integrand's periodicity to normalize phi // // Xiaogang's original code used a cast to long long here // but that fails if T has more digits than a long long, // so rewritten to use fmod instead: // if(fabs(phi) > 1 / tools::epsilon
()) { if(v > 1) return policies::raise_domain_error
( function, "Got v = %1%, but this is only supported for 0 <= phi <= pi/2", v, pol); // // Phi is so large that phi%pi is necessarily zero (or garbage), // just return the second part of the duplication formula: // value = 2 * fabs(phi) * ellint_pi_imp(v, k, vc, pol) / constants::pi
(); } else { T rphi = boost::math::tools::fmod_workaround(fabs(phi), constants::pi
() / 2); T m = 2 * (fabs(phi) - rphi) / constants::pi
(); int sign = 1; if(boost::math::tools::fmod_workaround(m, T(2)) > 0.5) { m += 1; sign = -1; rphi = constants::pi
() / 2 - rphi; } if((m > 0) && (v > 1)) { // // The region with v > 1 and phi outside [0, pi/2] is // currently unsupported: // return policies::raise_domain_error
( function, "Got v = %1%, but this is only supported for 0 <= phi <= pi/2", v, pol); } T sinp = sin(rphi); T cosp = cos(rphi); x = cosp * cosp; t = sinp * sinp; y = 1 - k * k * t; z = 1; if(v * t < 0.5) p = 1 - v * t; else p = x + vc * t; value = sign * sinp * (ellint_rf_imp(x, y, z, pol) + v * t * ellint_rj_imp(x, y, z, p, pol) / 3); if(m > 0) value += m * ellint_pi_imp(v, k, vc, pol); } if (phi < 0) { value = -value; // odd function } return value; } // Complete elliptic integral (Legendre form) of the third kind template
T ellint_pi_imp(T v, T k, T vc, const Policy& pol) { // Note arg vc = 1-v, possibly without cancellation errors BOOST_MATH_STD_USING using namespace boost::math::tools; static const char* function = "boost::math::ellint_pi<%1%>(%1%,%1%)"; if (abs(k) >= 1) { return policies::raise_domain_error
(function, "Got k = %1%, function requires |k| <= 1", k, pol); } if(vc <= 0) { // Result is complex: return policies::raise_domain_error
(function, "Got v = %1%, function requires v < 1", v, pol); } if(v == 0) { return (k == 0) ? boost::math::constants::pi
() / 2 : ellint_k_imp(k, pol); } if(v < 0) { T k2 = k * k; T N = (k2 - v) / (1 - v); T Nm1 = (1 - k2) / (1 - v); T p2 = sqrt(-v * (k2 - v) / (1 - v)); T result = boost::math::detail::ellint_pi_imp(N, k, Nm1, pol); result *= sqrt(Nm1 * (1 - k2 / N)); result += ellint_k_imp(k, pol) * k2 / p2; result /= sqrt((1 - v) * (1 - k2 / v)); return result; } T x = 0; T y = 1 - k * k; T z = 1; T p = vc; T value = ellint_rf_imp(x, y, z, pol) + v * ellint_rj_imp(x, y, z, p, pol) / 3; return value; } template
inline typename tools::promote_args
::type ellint_3(T1 k, T2 v, T3 phi, const mpl::false_&) { return boost::math::ellint_3(k, v, phi, policies::policy<>()); } template
inline typename tools::promote_args
::type ellint_3(T1 k, T2 v, const Policy& pol, const mpl::true_&) { typedef typename tools::promote_args
::type result_type; typedef typename policies::evaluation
::type value_type; return policies::checked_narrowing_cast
( detail::ellint_pi_imp( static_cast
(v), static_cast
(k), static_cast
(1-v), pol), "boost::math::ellint_3<%1%>(%1%,%1%)"); } } // namespace detail template
inline typename tools::promote_args
::type ellint_3(T1 k, T2 v, T3 phi, const Policy& pol) { typedef typename tools::promote_args
::type result_type; typedef typename policies::evaluation
::type value_type; return policies::checked_narrowing_cast
( detail::ellint_pi_imp( static_cast
(v), static_cast
(phi), static_cast
(k), static_cast
(1-v), pol), "boost::math::ellint_3<%1%>(%1%,%1%,%1%)"); } template
inline typename tools::promote_args
::type ellint_3(T1 k, T2 v, T3 phi) { typedef typename policies::is_policy
::type tag_type; return detail::ellint_3(k, v, phi, tag_type()); } template
inline typename tools::promote_args
::type ellint_3(T1 k, T2 v) { return ellint_3(k, v, policies::policy<>()); } }} // namespaces #endif // BOOST_MATH_ELLINT_3_HPP
ellint_3.hpp
Page URL
File URL
Prev
12/35
Next
Download
( 10 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.