DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SF_DIGAMMA_HPP #define BOOST_MATH_SF_DIGAMMA_HPP #include
#include
#include
#include
#include
namespace boost{ namespace math{ namespace detail{ // // Begin by defining the smallest value for which it is safe to // use the asymptotic expansion for digamma: // inline unsigned digamma_large_lim(const mpl::int_<0>*) { return 20; } inline unsigned digamma_large_lim(const void*) { return 10; } // // Implementations of the asymptotic expansion come next, // the coefficients of the series have been evaluated // in advance at high precision, and the series truncated // at the first term that's too small to effect the result. // Note that the series becomes divergent after a while // so truncation is very important. // // This first one gives 34-digit precision for x >= 20: // template
inline T digamma_imp_large(T x, const mpl::int_<0>*) { BOOST_MATH_STD_USING // ADL of std functions. static const T P[] = { 0.083333333333333333333333333333333333333333333333333L, -0.0083333333333333333333333333333333333333333333333333L, 0.003968253968253968253968253968253968253968253968254L, -0.0041666666666666666666666666666666666666666666666667L, 0.0075757575757575757575757575757575757575757575757576L, -0.021092796092796092796092796092796092796092796092796L, 0.083333333333333333333333333333333333333333333333333L, -0.44325980392156862745098039215686274509803921568627L, 3.0539543302701197438039543302701197438039543302701L, -26.456212121212121212121212121212121212121212121212L, 281.4601449275362318840579710144927536231884057971L, -3607.510546398046398046398046398046398046398046398L, 54827.583333333333333333333333333333333333333333333L, -974936.82385057471264367816091954022988505747126437L, 20052695.796688078946143462272494530559046688078946L, -472384867.72162990196078431372549019607843137254902L, 12635724795.916666666666666666666666666666666666667L }; x -= 1; T result = log(x); result += 1 / (2 * x); T z = 1 / (x*x); result -= z * tools::evaluate_polynomial(P, z); return result; } // // 19-digit precision for x >= 10: // template
inline T digamma_imp_large(T x, const mpl::int_<64>*) { BOOST_MATH_STD_USING // ADL of std functions. static const T P[] = { 0.083333333333333333333333333333333333333333333333333L, -0.0083333333333333333333333333333333333333333333333333L, 0.003968253968253968253968253968253968253968253968254L, -0.0041666666666666666666666666666666666666666666666667L, 0.0075757575757575757575757575757575757575757575757576L, -0.021092796092796092796092796092796092796092796092796L, 0.083333333333333333333333333333333333333333333333333L, -0.44325980392156862745098039215686274509803921568627L, 3.0539543302701197438039543302701197438039543302701L, -26.456212121212121212121212121212121212121212121212L, 281.4601449275362318840579710144927536231884057971L, }; x -= 1; T result = log(x); result += 1 / (2 * x); T z = 1 / (x*x); result -= z * tools::evaluate_polynomial(P, z); return result; } // // 17-digit precision for x >= 10: // template
inline T digamma_imp_large(T x, const mpl::int_<53>*) { BOOST_MATH_STD_USING // ADL of std functions. static const T P[] = { 0.083333333333333333333333333333333333333333333333333L, -0.0083333333333333333333333333333333333333333333333333L, 0.003968253968253968253968253968253968253968253968254L, -0.0041666666666666666666666666666666666666666666666667L, 0.0075757575757575757575757575757575757575757575757576L, -0.021092796092796092796092796092796092796092796092796L, 0.083333333333333333333333333333333333333333333333333L, -0.44325980392156862745098039215686274509803921568627L }; x -= 1; T result = log(x); result += 1 / (2 * x); T z = 1 / (x*x); result -= z * tools::evaluate_polynomial(P, z); return result; } // // 9-digit precision for x >= 10: // template
inline T digamma_imp_large(T x, const mpl::int_<24>*) { BOOST_MATH_STD_USING // ADL of std functions. static const T P[] = { 0.083333333333333333333333333333333333333333333333333L, -0.0083333333333333333333333333333333333333333333333333L, 0.003968253968253968253968253968253968253968253968254L }; x -= 1; T result = log(x); result += 1 / (2 * x); T z = 1 / (x*x); result -= z * tools::evaluate_polynomial(P, z); return result; } // // Now follow rational approximations over the range [1,2]. // // 35-digit precision: // template
T digamma_imp_1_2(T x, const mpl::int_<0>*) { // // Now the approximation, we use the form: // // digamma(x) = (x - root) * (Y + R(x-1)) // // Where root is the location of the positive root of digamma, // Y is a constant, and R is optimised for low absolute error // compared to Y. // // Max error found at 128-bit long double precision: 5.541e-35 // Maximum Deviation Found (approximation error): 1.965e-35 // static const float Y = 0.99558162689208984375F; static const T root1 = 1569415565.0 / 1073741824uL; static const T root2 = (381566830.0 / 1073741824uL) / 1073741824uL; static const T root3 = ((111616537.0 / 1073741824uL) / 1073741824uL) / 1073741824uL; static const T root4 = (((503992070.0 / 1073741824uL) / 1073741824uL) / 1073741824uL) / 1073741824uL; static const T root5 = 0.52112228569249997894452490385577338504019838794544e-36L; static const T P[] = { 0.25479851061131551526977464225335883769L, -0.18684290534374944114622235683619897417L, -0.80360876047931768958995775910991929922L, -0.67227342794829064330498117008564270136L, -0.26569010991230617151285010695543858005L, -0.05775672694575986971640757748003553385L, -0.0071432147823164975485922555833274240665L, -0.00048740753910766168912364555706064993274L, -0.16454996865214115723416538844975174761e-4L, -0.20327832297631728077731148515093164955e-6L }; static const T Q[] = { 1, 2.6210924610812025425088411043163287646L, 2.6850757078559596612621337395886392594L, 1.4320913706209965531250495490639289418L, 0.4410872083455009362557012239501953402L, 0.081385727399251729505165509278152487225L, 0.0089478633066857163432104815183858149496L, 0.00055861622855066424871506755481997374154L, 0.1760168552357342401304462967950178554e-4L, 0.20585454493572473724556649516040874384e-6L, -0.90745971844439990284514121823069162795e-11L, 0.48857673606545846774761343500033283272e-13L, }; T g = x - root1; g -= root2; g -= root3; g -= root4; g -= root5; T r = tools::evaluate_polynomial(P, x-1) / tools::evaluate_polynomial(Q, x-1); T result = g * Y + g * r; return result; } // // 19-digit precision: // template
T digamma_imp_1_2(T x, const mpl::int_<64>*) { // // Now the approximation, we use the form: // // digamma(x) = (x - root) * (Y + R(x-1)) // // Where root is the location of the positive root of digamma, // Y is a constant, and R is optimised for low absolute error // compared to Y. // // Max error found at 80-bit long double precision: 5.016e-20 // Maximum Deviation Found (approximation error): 3.575e-20 // static const float Y = 0.99558162689208984375F; static const T root1 = 1569415565.0 / 1073741824uL; static const T root2 = (381566830.0 / 1073741824uL) / 1073741824uL; static const T root3 = 0.9016312093258695918615325266959189453125e-19L; static const T P[] = { 0.254798510611315515235L, -0.314628554532916496608L, -0.665836341559876230295L, -0.314767657147375752913L, -0.0541156266153505273939L, -0.00289268368333918761452L }; static const T Q[] = { 1, 2.1195759927055347547L, 1.54350554664961128724L, 0.486986018231042975162L, 0.0660481487173569812846L, 0.00298999662592323990972L, -0.165079794012604905639e-5L, 0.317940243105952177571e-7L }; T g = x - root1; g -= root2; g -= root3; T r = tools::evaluate_polynomial(P, x-1) / tools::evaluate_polynomial(Q, x-1); T result = g * Y + g * r; return result; } // // 18-digit precision: // template
T digamma_imp_1_2(T x, const mpl::int_<53>*) { // // Now the approximation, we use the form: // // digamma(x) = (x - root) * (Y + R(x-1)) // // Where root is the location of the positive root of digamma, // Y is a constant, and R is optimised for low absolute error // compared to Y. // // Maximum Deviation Found: 1.466e-18 // At double precision, max error found: 2.452e-17 // static const float Y = 0.99558162689208984F; static const T root1 = 1569415565.0 / 1073741824uL; static const T root2 = (381566830.0 / 1073741824uL) / 1073741824uL; static const T root3 = 0.9016312093258695918615325266959189453125e-19L; static const T P[] = { 0.25479851061131551L, -0.32555031186804491L, -0.65031853770896507L, -0.28919126444774784L, -0.045251321448739056L, -0.0020713321167745952L }; static const T Q[] = { 1L, 2.0767117023730469L, 1.4606242909763515L, 0.43593529692665969L, 0.054151797245674225L, 0.0021284987017821144L, -0.55789841321675513e-6L }; T g = x - root1; g -= root2; g -= root3; T r = tools::evaluate_polynomial(P, x-1) / tools::evaluate_polynomial(Q, x-1); T result = g * Y + g * r; return result; } // // 9-digit precision: // template
inline T digamma_imp_1_2(T x, const mpl::int_<24>*) { // // Now the approximation, we use the form: // // digamma(x) = (x - root) * (Y + R(x-1)) // // Where root is the location of the positive root of digamma, // Y is a constant, and R is optimised for low absolute error // compared to Y. // // Maximum Deviation Found: 3.388e-010 // At float precision, max error found: 2.008725e-008 // static const float Y = 0.99558162689208984f; static const T root = 1532632.0f / 1048576; static const T root_minor = static_cast
(0.3700660185912626595423257213284682051735604e-6L); static const T P[] = { 0.25479851023250261e0, -0.44981331915268368e0, -0.43916936919946835e0, -0.61041765350579073e-1 }; static const T Q[] = { 0.1e1, 0.15890202430554952e1, 0.65341249856146947e0, 0.63851690523355715e-1 }; T g = x - root; g -= root_minor; T r = tools::evaluate_polynomial(P, x-1) / tools::evaluate_polynomial(Q, x-1); T result = g * Y + g * r; return result; } template
T digamma_imp(T x, const Tag* t, const Policy& pol) { // // This handles reflection of negative arguments, and all our // error handling, then forwards to the T-specific approximation. // BOOST_MATH_STD_USING // ADL of std functions. T result = 0; // // Check for negative arguments and use reflection: // if(x < 0) { // Reflect: x = 1 - x; // Argument reduction for tan: T remainder = x - floor(x); // Shift to negative if > 0.5: if(remainder > 0.5) { remainder -= 1; } // // check for evaluation at a negative pole: // if(remainder == 0) { return policies::raise_pole_error
("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol); } result = constants::pi
() / tan(constants::pi
() * remainder); } // // If we're above the lower-limit for the // asymptotic expansion then use it: // if(x >= digamma_large_lim(t)) { result += digamma_imp_large(x, t); } else { // // If x > 2 reduce to the interval [1,2]: // while(x > 2) { x -= 1; result += 1/x; } // // If x < 1 use recurrance to shift to > 1: // if(x < 1) { result = -1/x; x += 1; } result += digamma_imp_1_2(x, t); } return result; } } // namespace detail template
inline typename tools::promote_args
::type digamma(T x, const Policy& pol) { typedef typename tools::promote_args
::type result_type; typedef typename policies::evaluation
::type value_type; typedef typename policies::precision
::type precision_type; typedef typename mpl::if_< mpl::or_< mpl::less_equal
>, mpl::greater
> >, mpl::int_<0>, typename mpl::if_< mpl::less
>, mpl::int_<24>, typename mpl::if_< mpl::less
>, mpl::int_<53>, mpl::int_<64> >::type >::type >::type tag_type; return policies::checked_narrowing_cast
(detail::digamma_imp( static_cast
(x), static_cast
(0), pol), "boost::math::digamma<%1%>(%1%)"); } template
inline typename tools::promote_args
::type digamma(T x) { return digamma(x, policies::policy<>()); } } // namespace math } // namespace boost #endif
digamma.hpp
Page URL
File URL
Prev
9/35
Next
Download
( 14 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.