DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// boost\math\distributions\poisson.hpp // Copyright John Maddock 2006. // Copyright Paul A. Bristow 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Poisson distribution is a discrete probability distribution. // It expresses the probability of a number (k) of // events, occurrences, failures or arrivals occurring in a fixed time, // assuming these events occur with a known average or mean rate (lambda) // and are independent of the time since the last event. // The distribution was discovered by Sim�on-Denis Poisson (1781�1840). // Parameter lambda is the mean number of events in the given time interval. // The random variate k is the number of events, occurrences or arrivals. // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. // Note that the Poisson distribution // (like others including the binomial, negative binomial & Bernoulli) // is strictly defined as a discrete function: // only integral values of k are envisaged. // However because the method of calculation uses a continuous gamma function, // it is convenient to treat it as if a continous function, // and permit non-integral values of k. // To enforce the strict mathematical model, users should use floor or ceil functions // on k outside this function to ensure that k is integral. // See http://en.wikipedia.org/wiki/Poisson_distribution // http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html #ifndef BOOST_MATH_SPECIAL_POISSON_HPP #define BOOST_MATH_SPECIAL_POISSON_HPP #include
#include
// for incomplete gamma. gamma_q #include
// complements #include
// error checks #include
// isnan. #include
// factorials. #include
// for root finding. #include
#include
namespace boost { namespace math { namespace detail{ template
inline typename Dist::value_type inverse_discrete_quantile( const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, const typename Dist::value_type& multiplier, const typename Dist::value_type& adder, const policies::discrete_quantile
&, boost::uintmax_t& max_iter); template
inline typename Dist::value_type inverse_discrete_quantile( const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, const typename Dist::value_type& multiplier, const typename Dist::value_type& adder, const policies::discrete_quantile
&, boost::uintmax_t& max_iter); template
inline typename Dist::value_type inverse_discrete_quantile( const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, const typename Dist::value_type& multiplier, const typename Dist::value_type& adder, const policies::discrete_quantile
&, boost::uintmax_t& max_iter); template
inline typename Dist::value_type inverse_discrete_quantile( const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, const typename Dist::value_type& multiplier, const typename Dist::value_type& adder, const policies::discrete_quantile
&, boost::uintmax_t& max_iter); template
inline typename Dist::value_type inverse_discrete_quantile( const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, const typename Dist::value_type& multiplier, const typename Dist::value_type& adder, const policies::discrete_quantile
&, boost::uintmax_t& max_iter); template
inline typename Dist::value_type inverse_discrete_quantile( const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, const typename Dist::value_type& multiplier, const typename Dist::value_type& adder, const policies::discrete_quantile
&, boost::uintmax_t& max_iter); } namespace poisson_detail { // Common error checking routines for Poisson distribution functions. // These are convoluted, & apparently redundant, to try to ensure that // checks are always performed, even if exceptions are not enabled. template
inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy& pol) { if(!(boost::math::isfinite)(mean) || (mean < 0)) { *result = policies::raise_domain_error
( function, "Mean argument is %1%, but must be >= 0 !", mean, pol); return false; } return true; } // bool check_mean template
inline bool check_mean_NZ(const char* function, const RealType& mean, RealType* result, const Policy& pol) { // mean == 0 is considered an error. if( !(boost::math::isfinite)(mean) || (mean <= 0)) { *result = policies::raise_domain_error
( function, "Mean argument is %1%, but must be > 0 !", mean, pol); return false; } return true; } // bool check_mean_NZ template
inline bool check_dist(const char* function, const RealType& mean, RealType* result, const Policy& pol) { // Only one check, so this is redundant really but should be optimized away. return check_mean_NZ(function, mean, result, pol); } // bool check_dist template
inline bool check_k(const char* function, const RealType& k, RealType* result, const Policy& pol) { if((k < 0) || !(boost::math::isfinite)(k)) { *result = policies::raise_domain_error
( function, "Number of events k argument is %1%, but must be >= 0 !", k, pol); return false; } return true; } // bool check_k template
inline bool check_dist_and_k(const char* function, RealType mean, RealType k, RealType* result, const Policy& pol) { if((check_dist(function, mean, result, pol) == false) || (check_k(function, k, result, pol) == false)) { return false; } return true; } // bool check_dist_and_k template
inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol) { // Check 0 <= p <= 1 if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1)) { *result = policies::raise_domain_error
( function, "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol); return false; } return true; } // bool check_prob template
inline bool check_dist_and_prob(const char* function, RealType mean, RealType p, RealType* result, const Policy& pol) { if((check_dist(function, mean, result, pol) == false) || (check_prob(function, p, result, pol) == false)) { return false; } return true; } // bool check_dist_and_prob } // namespace poisson_detail template
> class poisson_distribution { public: typedef RealType value_type; typedef Policy policy_type; poisson_distribution(RealType mean = 1) : m_l(mean) // mean (lambda). { // Expected mean number of events that occur during the given interval. RealType r; poisson_detail::check_dist( "boost::math::poisson_distribution<%1%>::poisson_distribution", m_l, &r, Policy()); } // poisson_distribution constructor. RealType mean() const { // Private data getter function. return m_l; } private: // Data member, initialized by constructor. RealType m_l; // mean number of occurrences. }; // template
class poisson_distribution typedef poisson_distribution
poisson; // Reserved name of type double. // Non-member functions to give properties of the distribution. template
inline const std::pair
range(const poisson_distribution
& /* dist */) { // Range of permissible values for random variable k. using boost::math::tools::max_value; return std::pair
(0, max_value
()); // Max integer? } template
inline const std::pair
support(const poisson_distribution
& /* dist */) { // Range of supported values for random variable k. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. using boost::math::tools::max_value; return std::pair
(0, max_value
()); } template
inline RealType mean(const poisson_distribution
& dist) { // Mean of poisson distribution = lambda. return dist.mean(); } // mean template
inline RealType mode(const poisson_distribution
& dist) { // mode. BOOST_MATH_STD_USING // ADL of std functions. return floor(dist.mean()); } //template
//inline RealType median(const poisson_distribution
& dist) //{ // median = approximately lambda + 1/3 - 0.2/lambda // RealType l = dist.mean(); // return dist.mean() + static_cast
(0.3333333333333333333333333333333333333333333333) // - static_cast
(0.2) / l; //} // BUT this formula appears to be out-by-one compared to quantile(half) // Query posted on Wikipedia. // Now implemented via quantile(half) in derived accessors. template
inline RealType variance(const poisson_distribution
& dist) { // variance. return dist.mean(); } // RealType standard_deviation(const poisson_distribution
& dist) // standard_deviation provided by derived accessors. template
inline RealType skewness(const poisson_distribution
& dist) { // skewness = sqrt(l). BOOST_MATH_STD_USING // ADL of std functions. return 1 / sqrt(dist.mean()); } template
inline RealType kurtosis_excess(const poisson_distribution
& dist) { // skewness = sqrt(l). return 1 / dist.mean(); // kurtosis_excess 1/mean from Wiki & MathWorld eq 31. // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess // is more convenient because the kurtosis excess of a normal distribution is zero // whereas the true kurtosis is 3. } // RealType kurtosis_excess template
inline RealType kurtosis(const poisson_distribution
& dist) { // kurtosis is 4th moment about the mean = u4 / sd ^ 4 // http://en.wikipedia.org/wiki/Curtosis // kurtosis can range from -2 (flat top) to +infinity (sharp peak & heavy tails). // http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm return 3 + 1 / dist.mean(); // NIST. // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess // is more convenient because the kurtosis excess of a normal distribution is zero // whereas the true kurtosis is 3. } // RealType kurtosis template
RealType pdf(const poisson_distribution
& dist, const RealType& k) { // Probability Density/Mass Function. // Probability that there are EXACTLY k occurrences (or arrivals). BOOST_FPU_EXCEPTION_GUARD BOOST_MATH_STD_USING // for ADL of std functions. RealType mean = dist.mean(); // Error check: RealType result; if(false == poisson_detail::check_dist_and_k( "boost::math::pdf(const poisson_distribution<%1%>&, %1%)", mean, k, &result, Policy())) { return result; } // Special case of mean zero, regardless of the number of events k. if (mean == 0) { // Probability for any k is zero. return 0; } if (k == 0) { // mean ^ k = 1, and k! = 1, so can simplify. return exp(-mean); } return boost::math::gamma_p_derivative(k+1, mean, Policy()); } // pdf template
RealType cdf(const poisson_distribution
& dist, const RealType& k) { // Cumulative Distribution Function Poisson. // The random variate k is the number of occurrences(or arrivals) // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. // Returns the sum of the terms 0 through k of the Poisson Probability Density or Mass (pdf). // But note that the Poisson distribution // (like others including the binomial, negative binomial & Bernoulli) // is strictly defined as a discrete function: only integral values of k are envisaged. // However because of the method of calculation using a continuous gamma function, // it is convenient to treat it as if it is a continous function // and permit non-integral values of k. // To enforce the strict mathematical model, users should use floor or ceil functions // outside this function to ensure that k is integral. // The terms are not summed directly (at least for larger k) // instead the incomplete gamma integral is employed, BOOST_MATH_STD_USING // for ADL of std function exp. RealType mean = dist.mean(); // Error checks: RealType result; if(false == poisson_detail::check_dist_and_k( "boost::math::cdf(const poisson_distribution<%1%>&, %1%)", mean, k, &result, Policy())) { return result; } // Special cases: if (mean == 0) { // Probability for any k is zero. return 0; } if (k == 0) { // return pdf(dist, static_cast
(0)); // but mean (and k) have already been checked, // so this avoids unnecessary repeated checks. return exp(-mean); } // For small integral k could use a finite sum - // it's cheaper than the gamma function. // BUT this is now done efficiently by gamma_q function. // Calculate poisson cdf using the gamma_q function. return gamma_q(k+1, mean, Policy()); } // binomial cdf template
RealType cdf(const complemented2_type
, RealType>& c) { // Complemented Cumulative Distribution Function Poisson // The random variate k is the number of events, occurrences or arrivals. // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. // But note that the Poisson distribution // (like others including the binomial, negative binomial & Bernoulli) // is strictly defined as a discrete function: only integral values of k are envisaged. // However because of the method of calculation using a continuous gamma function, // it is convenient to treat it as is it is a continous function // and permit non-integral values of k. // To enforce the strict mathematical model, users should use floor or ceil functions // outside this function to ensure that k is integral. // Returns the sum of the terms k+1 through inf of the Poisson Probability Density/Mass (pdf). // The terms are not summed directly (at least for larger k) // instead the incomplete gamma integral is employed, RealType const& k = c.param; poisson_distribution
const& dist = c.dist; RealType mean = dist.mean(); // Error checks: RealType result; if(false == poisson_detail::check_dist_and_k( "boost::math::cdf(const poisson_distribution<%1%>&, %1%)", mean, k, &result, Policy())) { return result; } // Special case of mean, regardless of the number of events k. if (mean == 0) { // Probability for any k is unity, complement of zero. return 1; } if (k == 0) { // Avoid repeated checks on k and mean in gamma_p. return -boost::math::expm1(-mean, Policy()); } // Unlike un-complemented cdf (sum from 0 to k), // can't use finite sum from k+1 to infinity for small integral k, // anyway it is now done efficiently by gamma_p. return gamma_p(k + 1, mean, Policy()); // Calculate Poisson cdf using the gamma_p function. // CCDF = gamma_p(k+1, lambda) } // poisson ccdf template
inline RealType quantile(const poisson_distribution
& dist, const RealType& p) { // Quantile (or Percent Point) Poisson function. // Return the number of expected events k for a given probability p. RealType result; // of Argument checks: if(false == poisson_detail::check_prob( "boost::math::quantile(const poisson_distribution<%1%>&, %1%)", p, &result, Policy())) { return result; } // Special case: if (dist.mean() == 0) { // if mean = 0 then p = 0, so k can be anything? if (false == poisson_detail::check_mean_NZ( "boost::math::quantile(const poisson_distribution<%1%>&, %1%)", dist.mean(), &result, Policy())) { return result; } } /* BOOST_MATH_STD_USING // ADL of std functions. // if(p == 0) NOT necessarily zero! // Not necessarily any special value of k because is unlimited. if (p <= exp(-dist.mean())) { // if p <= cdf for 0 events (== pdf for 0 events), then quantile must be zero. return 0; } return gamma_q_inva(dist.mean(), p, Policy()) - 1; */ typedef typename Policy::discrete_quantile_type discrete_type; boost::uintmax_t max_iter = policies::get_max_root_iterations
(); RealType guess, factor = 8; RealType z = dist.mean(); if(z < 1) guess = z; else guess = boost::math::detail::inverse_poisson_cornish_fisher(z, p, 1-p, Policy()); if(z > 5) { if(z > 1000) factor = 1.01f; else if(z > 50) factor = 1.1f; else if(guess > 10) factor = 1.25f; else factor = 2; if(guess < 1.1) factor = 8; } return detail::inverse_discrete_quantile( dist, p, 1-p, guess, factor, RealType(1), discrete_type(), max_iter); } // quantile template
inline RealType quantile(const complemented2_type
, RealType>& c) { // Quantile (or Percent Point) of Poisson function. // Return the number of expected events k for a given // complement of the probability q. // // Error checks: RealType q = c.param; const poisson_distribution
& dist = c.dist; RealType result; // of argument checks. if(false == poisson_detail::check_prob( "boost::math::quantile(const poisson_distribution<%1%>&, %1%)", q, &result, Policy())) { return result; } // Special case: if (dist.mean() == 0) { // if mean = 0 then p = 0, so k can be anything? if (false == poisson_detail::check_mean_NZ( "boost::math::quantile(const poisson_distribution<%1%>&, %1%)", dist.mean(), &result, Policy())) { return result; } } /* if (-q <= boost::math::expm1(-dist.mean())) { // if q <= cdf(complement for 0 events, then quantile must be zero. return 0; } return gamma_p_inva(dist.mean(), q, Policy()) -1; */ typedef typename Policy::discrete_quantile_type discrete_type; boost::uintmax_t max_iter = policies::get_max_root_iterations
(); RealType guess, factor = 8; RealType z = dist.mean(); if(z < 1) guess = z; else guess = boost::math::detail::inverse_poisson_cornish_fisher(z, 1-q, q, Policy()); if(z > 5) { if(z > 1000) factor = 1.01f; else if(z > 50) factor = 1.1f; else if(guess > 10) factor = 1.25f; else factor = 2; if(guess < 1.1) factor = 8; } return detail::inverse_discrete_quantile( dist, 1-q, q, guess, factor, RealType(1), discrete_type(), max_iter); } // quantile complement. } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include
#include
#endif // BOOST_MATH_SPECIAL_POISSON_HPP
poisson.hpp
Page URL
File URL
Prev
18/23
Next
Download
( 23 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.