DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// boost\math\special_functions\negative_binomial.hpp // Copyright Paul A. Bristow 2007. // Copyright John Maddock 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // http://en.wikipedia.org/wiki/negative_binomial_distribution // http://mathworld.wolfram.com/NegativeBinomialDistribution.html // http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html // The negative binomial distribution NegativeBinomialDistribution[n, p] // is the distribution of the number (k) of failures that occur in a sequence of trials before // r successes have occurred, where the probability of success in each trial is p. // In a sequence of Bernoulli trials or events // (independent, yes or no, succeed or fail) with success_fraction probability p, // negative_binomial is the probability that k or fewer failures // preceed the r th trial's success. // random variable k is the number of failures (NOT the probability). // Negative_binomial distribution is a discrete probability distribution. // But note that the negative binomial distribution // (like others including the binomial, Poisson & Bernoulli) // is strictly defined as a discrete function: only integral values of k are envisaged. // However because of the method of calculation using a continuous gamma function, // it is convenient to treat it as if a continous function, // and permit non-integral values of k. // However, by default the policy is to use discrete_quantile_policy. // To enforce the strict mathematical model, users should use conversion // on k outside this function to ensure that k is integral. // MATHCAD cumulative negative binomial pnbinom(k, n, p) // Implementation note: much greater speed, and perhaps greater accuracy, // might be achieved for extreme values by using a normal approximation. // This is NOT been tested or implemented. #ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP #define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP #include
#include
// for ibeta(a, b, x) == Ix(a, b). #include
// complement. #include
// error checks domain_error & logic_error. #include
// isnan. #include
// for root finding. #include
#include
#include
#include
#include
#include
// using std::numeric_limits; #include
#if defined (BOOST_MSVC) # pragma warning(push) // This believed not now necessary, so commented out. //# pragma warning(disable: 4702) // unreachable code. // in domain_error_imp in error_handling. #endif namespace boost { namespace math { namespace negative_binomial_detail { // Common error checking routines for negative binomial distribution functions: template
inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol) { if( !(boost::math::isfinite)(r) || (r <= 0) ) { *result = policies::raise_domain_error
( function, "Number of successes argument is %1%, but must be > 0 !", r, pol); return false; } return true; } template
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) { if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) { *result = policies::raise_domain_error
( function, "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); return false; } return true; } template
inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol) { return check_success_fraction(function, p, result, pol) && check_successes(function, r, result, pol); } template
inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol) { if(check_dist(function, r, p, result, pol) == false) { return false; } if( !(boost::math::isfinite)(k) || (k < 0) ) { // Check k failures. *result = policies::raise_domain_error
( function, "Number of failures argument is %1%, but must be >= 0 !", k, pol); return false; } return true; } // Check_dist_and_k template
inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol) { if(check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol) == false) { return false; } return true; } // check_dist_and_prob } // namespace negative_binomial_detail template
> class negative_binomial_distribution { public: typedef RealType value_type; typedef Policy policy_type; negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p) { // Constructor. RealType result; negative_binomial_detail::check_dist( "negative_binomial_distribution<%1%>::negative_binomial_distribution", m_r, // Check successes r > 0. m_p, // Check success_fraction 0 <= p <= 1. &result, Policy()); } // negative_binomial_distribution constructor. // Private data getter class member functions. RealType success_fraction() const { // Probability of success as fraction in range 0 to 1. return m_p; } RealType successes() const { // Total number of successes r. return m_r; } static RealType find_lower_bound_on_p( RealType trials, RealType successes, RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. { static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p"; RealType result; // of error checks. RealType failures = trials - successes; if(false == detail::check_probability(function, alpha, &result, Policy()) && negative_binomial_detail::check_dist_and_k( function, successes, RealType(0), failures, &result, Policy())) { return result; } // Use complement ibeta_inv function for lower bound. // This is adapted from the corresponding binomial formula // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm // This is a Clopper-Pearson interval, and may be overly conservative, // see also "A Simple Improved Inferential Method for Some // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf // return ibeta_inv(successes, failures + 1, alpha, static_cast
(0), Policy()); } // find_lower_bound_on_p static RealType find_upper_bound_on_p( RealType trials, RealType successes, RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. { static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p"; RealType result; // of error checks. RealType failures = trials - successes; if(false == negative_binomial_detail::check_dist_and_k( function, successes, RealType(0), failures, &result, Policy()) && detail::check_probability(function, alpha, &result, Policy())) { return result; } if(failures == 0) return 1; // Use complement ibetac_inv function for upper bound. // Note adjusted failures value: *not* failures+1 as usual. // This is adapted from the corresponding binomial formula // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm // This is a Clopper-Pearson interval, and may be overly conservative, // see also "A Simple Improved Inferential Method for Some // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf // return ibetac_inv(successes, failures, alpha, static_cast
(0), Policy()); } // find_upper_bound_on_p // Estimate number of trials : // "How many trials do I need to be P% sure of seeing k or fewer failures?" static RealType find_minimum_number_of_trials( RealType k, // number of failures (k >= 0). RealType p, // success fraction 0 <= p <= 1. RealType alpha) // risk level threshold 0 <= alpha <= 1. { static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials"; // Error checks: RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, RealType(1), p, k, &result, Policy()) && detail::check_probability(function, alpha, &result, Policy())) { return result; } result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k return result + k; } // RealType find_number_of_failures static RealType find_maximum_number_of_trials( RealType k, // number of failures (k >= 0). RealType p, // success fraction 0 <= p <= 1. RealType alpha) // risk level threshold 0 <= alpha <= 1. { static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials"; // Error checks: RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, RealType(1), p, k, &result, Policy()) && detail::check_probability(function, alpha, &result, Policy())) { return result; } result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k return result + k; } // RealType find_number_of_trials complemented private: RealType m_r; // successes. RealType m_p; // success_fraction }; // template
class negative_binomial_distribution typedef negative_binomial_distribution
negative_binomial; // Reserved name of type double. template
inline const std::pair
range(const negative_binomial_distribution
& /* dist */) { // Range of permissible values for random variable k. using boost::math::tools::max_value; return std::pair
(0, max_value
()); // max_integer? } template
inline const std::pair
support(const negative_binomial_distribution
& /* dist */) { // Range of supported values for random variable k. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. using boost::math::tools::max_value; return std::pair
(0, max_value
()); // max_integer? } template
inline RealType mean(const negative_binomial_distribution
& dist) { // Mean of Negative Binomial distribution = r(1-p)/p. return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction(); } // mean //template
//inline RealType median(const negative_binomial_distribution
& dist) //{ // Median of negative_binomial_distribution is not defined. // return policies::raise_domain_error
(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits
::quiet_NaN()); //} // median // Now implemented via quantile(half) in derived accessors. template
inline RealType mode(const negative_binomial_distribution
& dist) { // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p] BOOST_MATH_STD_USING // ADL of std functions. return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction()); } // mode template
inline RealType skewness(const negative_binomial_distribution
& dist) { // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p)) BOOST_MATH_STD_USING // ADL of std functions. RealType p = dist.success_fraction(); RealType r = dist.successes(); return (2 - p) / sqrt(r * (1 - p)); } // skewness template
inline RealType kurtosis(const negative_binomial_distribution
& dist) { // kurtosis of Negative Binomial distribution // http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3 RealType p = dist.success_fraction(); RealType r = dist.successes(); return 3 + (6 / r) + ((p * p) / (r * (1 - p))); } // kurtosis template
inline RealType kurtosis_excess(const negative_binomial_distribution
& dist) { // kurtosis excess of Negative Binomial distribution // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess RealType p = dist.success_fraction(); RealType r = dist.successes(); return (6 - p * (6-p)) / (r * (1-p)); } // kurtosis_excess template
inline RealType variance(const negative_binomial_distribution
& dist) { // Variance of Binomial distribution = r (1-p) / p^2. return dist.successes() * (1 - dist.success_fraction()) / (dist.success_fraction() * dist.success_fraction()); } // variance // RealType standard_deviation(const negative_binomial_distribution
& dist) // standard_deviation provided by derived accessors. // RealType hazard(const negative_binomial_distribution
& dist) // hazard of Negative Binomial distribution provided by derived accessors. // RealType chf(const negative_binomial_distribution
& dist) // chf of Negative Binomial distribution provided by derived accessors. template
inline RealType pdf(const negative_binomial_distribution
& dist, const RealType& k) { // Probability Density/Mass Function. BOOST_FPU_EXCEPTION_GUARD static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)"; RealType r = dist.successes(); RealType p = dist.success_fraction(); RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, r, dist.success_fraction(), k, &result, Policy())) { return result; } result = (p/(r + k)) * ibeta_derivative(r, static_cast
(k+1), p, Policy()); // Equivalent to: // return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k); return result; } // negative_binomial_pdf template
inline RealType cdf(const negative_binomial_distribution
& dist, const RealType& k) { // Cumulative Distribution Function of Negative Binomial. static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; using boost::math::ibeta; // Regularized incomplete beta function. // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. RealType p = dist.success_fraction(); RealType r = dist.successes(); // Error check: RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, r, dist.success_fraction(), k, &result, Policy())) { return result; } RealType probability = ibeta(r, static_cast
(k+1), p, Policy()); // Ip(r, k+1) = ibeta(r, k+1, p) return probability; } // cdf Cumulative Distribution Function Negative Binomial. template
inline RealType cdf(const complemented2_type
, RealType>& c) { // Complemented Cumulative Distribution Function Negative Binomial. static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; using boost::math::ibetac; // Regularized incomplete beta function complement. // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. RealType const& k = c.param; negative_binomial_distribution
const& dist = c.dist; RealType p = dist.success_fraction(); RealType r = dist.successes(); // Error check: RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, r, p, k, &result, Policy())) { return result; } // Calculate cdf negative binomial using the incomplete beta function. // Use of ibeta here prevents cancellation errors in calculating // 1-p if p is very small, perhaps smaller than machine epsilon. // Ip(k+1, r) = ibetac(r, k+1, p) // constrain_probability here? RealType probability = ibetac(r, static_cast
(k+1), p, Policy()); // Numerical errors might cause probability to be slightly outside the range < 0 or > 1. // This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits. return probability; } // cdf Cumulative Distribution Function Negative Binomial. template
inline RealType quantile(const negative_binomial_distribution
& dist, const RealType& P) { // Quantile, percentile/100 or Percent Point Negative Binomial function. // Return the number of expected failures k for a given probability p. // Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability. // MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability. // k argument may be integral, signed, or unsigned, or floating point. // BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; BOOST_MATH_STD_USING // ADL of std functions. RealType p = dist.success_fraction(); RealType r = dist.successes(); // Check dist and P. RealType result; if(false == negative_binomial_detail::check_dist_and_prob (function, r, p, P, &result, Policy())) { return result; } // Special cases. if (P == 1) { // Would need +infinity failures for total confidence. result = policies::raise_overflow_error
( function, "Probability argument is 1, which implies infinite failures !", Policy()); return result; // usually means return +std::numeric_limits
::infinity(); // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR } if (P == 0) { // No failures are expected if P = 0. return 0; // Total trials will be just dist.successes. } if (P <= pow(dist.success_fraction(), dist.successes())) { // p <= pdf(dist, 0) == cdf(dist, 0) return 0; } /* // Calculate quantile of negative_binomial using the inverse incomplete beta function. using boost::math::ibeta_invb; return ibeta_invb(r, p, P, Policy()) - 1; // */ RealType guess = 0; RealType factor = 5; if(r * r * r * P * p > 0.005) guess = detail::inverse_negative_binomial_cornish_fisher(r, p, 1-p, P, 1-P, Policy()); if(guess < 10) { // // Cornish-Fisher Negative binomial approximation not accurate in this area: // guess = (std::min)(r * 2, RealType(10)); } else factor = (1-P < sqrt(tools::epsilon
())) ? 2 : (guess < 20 ? 1.2f : 1.1f); BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); // // Max iterations permitted: // boost::uintmax_t max_iter = policies::get_max_root_iterations
(); typedef typename Policy::discrete_quantile_type discrete_type; return detail::inverse_discrete_quantile( dist, P, 1-P, guess, factor, RealType(1), discrete_type(), max_iter); } // RealType quantile(const negative_binomial_distribution dist, p) template
inline RealType quantile(const complemented2_type
, RealType>& c) { // Quantile or Percent Point Binomial function. // Return the number of expected failures k for a given // complement of the probability Q = 1 - P. static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; BOOST_MATH_STD_USING // Error checks: RealType Q = c.param; const negative_binomial_distribution
& dist = c.dist; RealType p = dist.success_fraction(); RealType r = dist.successes(); RealType result; if(false == negative_binomial_detail::check_dist_and_prob( function, r, p, Q, &result, Policy())) { return result; } // Special cases: // if(Q == 1) { // There may actually be no answer to this question, // since the probability of zero failures may be non-zero, return 0; // but zero is the best we can do: } if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) { // q <= cdf(complement(dist, 0)) == pdf(dist, 0) return 0; // } if(Q == 0) { // Probability 1 - Q == 1 so infinite failures to achieve certainty. // Would need +infinity failures for total confidence. result = policies::raise_overflow_error
( function, "Probability argument complement is 0, which implies infinite failures !", Policy()); return result; // usually means return +std::numeric_limits
::infinity(); // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR } //return ibetac_invb(r, p, Q, Policy()) -1; RealType guess = 0; RealType factor = 5; if(r * r * r * (1-Q) * p > 0.005) guess = detail::inverse_negative_binomial_cornish_fisher(r, p, 1-p, 1-Q, Q, Policy()); if(guess < 10) { // // Cornish-Fisher Negative binomial approximation not accurate in this area: // guess = (std::min)(r * 2, RealType(10)); } else factor = (Q < sqrt(tools::epsilon
())) ? 2 : (guess < 20 ? 1.2f : 1.1f); BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); // // Max iterations permitted: // boost::uintmax_t max_iter = policies::get_max_root_iterations
(); typedef typename Policy::discrete_quantile_type discrete_type; return detail::inverse_discrete_quantile( dist, 1-Q, Q, guess, factor, RealType(1), discrete_type(), max_iter); } // quantile complement } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include
#if defined (BOOST_MSVC) # pragma warning(pop) #endif #endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
negative_binomial.hpp
Page URL
File URL
Prev
15/23
Next
Download
( 25 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.