DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP #define BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP #include
#include
// for incomplete beta. #include
// complements #include
// error checks #include
#include
namespace boost{ namespace math{ template
> class fisher_f_distribution { public: typedef RealType value_type; typedef Policy policy_type; fisher_f_distribution(const RealType& i, const RealType& j) : m_df1(i), m_df2(j) { static const char* function = "fisher_f_distribution<%1%>::fisher_f_distribution"; RealType result; detail::check_df( function, m_df1, &result, Policy()); detail::check_df( function, m_df2, &result, Policy()); } // fisher_f_distribution RealType degrees_of_freedom1()const { return m_df1; } RealType degrees_of_freedom2()const { return m_df2; } private: // // Data members: // RealType m_df1; // degrees of freedom are a real number. RealType m_df2; // degrees of freedom are a real number. }; typedef fisher_f_distribution
fisher_f; template
inline const std::pair
range(const fisher_f_distribution
& /*dist*/) { // Range of permissible values for random variable x. using boost::math::tools::max_value; return std::pair
(0, max_value
()); } template
inline const std::pair
support(const fisher_f_distribution
& /*dist*/) { // Range of supported values for random variable x. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. using boost::math::tools::max_value; return std::pair
(0, max_value
()); } template
RealType pdf(const fisher_f_distribution
& dist, const RealType& x) { BOOST_MATH_STD_USING // for ADL of std functions RealType df1 = dist.degrees_of_freedom1(); RealType df2 = dist.degrees_of_freedom2(); // Error check: RealType error_result; static const char* function = "boost::math::pdf(fisher_f_distribution<%1%> const&, %1%)"; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy())) return error_result; if((x < 0) || !(boost::math::isfinite)(x)) { return policies::raise_domain_error
( function, "Random variable parameter was %1%, but must be > 0 !", x, Policy()); } if(x == 0) { // special cases: if(df1 < 2) return policies::raise_overflow_error
( function, 0, Policy()); else if(df1 == 2) return 1; else return 0; } // // You reach this formula by direct differentiation of the // cdf expressed in terms of the incomplete beta. // // There are two versions so we don't pass a value of z // that is very close to 1 to ibeta_derivative: for some values // of df1 and df2, all the change takes place in this area. // RealType v1x = df1 * x; RealType result; if(v1x > df2) { result = (df2 * df1) / ((df2 + v1x) * (df2 + v1x)); result *= ibeta_derivative(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy()); } else { result = df2 + df1 * x; result = (result * df1 - x * df1 * df1) / (result * result); result *= ibeta_derivative(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy()); } return result; } // pdf template
inline RealType cdf(const fisher_f_distribution
& dist, const RealType& x) { static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)"; RealType df1 = dist.degrees_of_freedom1(); RealType df2 = dist.degrees_of_freedom2(); // Error check: RealType error_result; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy())) return error_result; if((x < 0) || !(boost::math::isfinite)(x)) { return policies::raise_domain_error
( function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy()); } RealType v1x = df1 * x; // // There are two equivalent formulas used here, the aim is // to prevent the final argument to the incomplete beta // from being too close to 1: for some values of df1 and df2 // the rate of change can be arbitrarily large in this area, // whilst the value we're passing will have lost information // content as a result of being 0.999999something. Better // to switch things around so we're passing 1-z instead. // return v1x > df2 ? boost::math::ibetac(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy()) : boost::math::ibeta(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy()); } // cdf template
inline RealType quantile(const fisher_f_distribution
& dist, const RealType& p) { static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)"; RealType df1 = dist.degrees_of_freedom1(); RealType df2 = dist.degrees_of_freedom2(); // Error check: RealType error_result; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy()) && detail::check_probability( function, p, &error_result, Policy())) return error_result; RealType x, y; x = boost::math::ibeta_inv(df1 / 2, df2 / 2, p, &y, Policy()); return df2 * x / (df1 * y); } // quantile template
inline RealType cdf(const complemented2_type
, RealType>& c) { static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)"; RealType df1 = c.dist.degrees_of_freedom1(); RealType df2 = c.dist.degrees_of_freedom2(); RealType x = c.param; // Error check: RealType error_result; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy())) return error_result; if((x < 0) || !(boost::math::isfinite)(x)) { return policies::raise_domain_error
( function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy()); } RealType v1x = df1 * x; // // There are two equivalent formulas used here, the aim is // to prevent the final argument to the incomplete beta // from being too close to 1: for some values of df1 and df2 // the rate of change can be arbitrarily large in this area, // whilst the value we're passing will have lost information // content as a result of being 0.999999something. Better // to switch things around so we're passing 1-z instead. // return v1x > df2 ? boost::math::ibeta(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy()) : boost::math::ibetac(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy()); } template
inline RealType quantile(const complemented2_type
, RealType>& c) { static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)"; RealType df1 = c.dist.degrees_of_freedom1(); RealType df2 = c.dist.degrees_of_freedom2(); RealType p = c.param; // Error check: RealType error_result; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy()) && detail::check_probability( function, p, &error_result, Policy())) return error_result; RealType x, y; x = boost::math::ibetac_inv(df1 / 2, df2 / 2, p, &y, Policy()); return df2 * x / (df1 * y); } template
inline RealType mean(const fisher_f_distribution
& dist) { // Mean of F distribution = v. static const char* function = "boost::math::mean(fisher_f_distribution<%1%> const&)"; RealType df1 = dist.degrees_of_freedom1(); RealType df2 = dist.degrees_of_freedom2(); // Error check: RealType error_result; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy())) return error_result; if(df2 <= 2) { return policies::raise_domain_error
( function, "Second degree of freedom was %1% but must be > 2 in order for the distribution to have a mean.", df2, Policy()); } return df2 / (df2 - 2); } // mean template
inline RealType variance(const fisher_f_distribution
& dist) { // Variance of F distribution. static const char* function = "boost::math::variance(fisher_f_distribution<%1%> const&)"; RealType df1 = dist.degrees_of_freedom1(); RealType df2 = dist.degrees_of_freedom2(); // Error check: RealType error_result; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy())) return error_result; if(df2 <= 4) { return policies::raise_domain_error
( function, "Second degree of freedom was %1% but must be > 4 in order for the distribution to have a valid variance.", df2, Policy()); } return 2 * df2 * df2 * (df1 + df2 - 2) / (df1 * (df2 - 2) * (df2 - 2) * (df2 - 4)); } // variance template
inline RealType mode(const fisher_f_distribution
& dist) { static const char* function = "boost::math::mode(fisher_f_distribution<%1%> const&)"; RealType df1 = dist.degrees_of_freedom1(); RealType df2 = dist.degrees_of_freedom2(); // Error check: RealType error_result; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy())) return error_result; if(df2 <= 2) { return policies::raise_domain_error
( function, "Second degree of freedom was %1% but must be > 2 in order for the distribution to have a mode.", df2, Policy()); } return df2 * (df1 - 2) / (df1 * (df2 + 2)); } //template
//inline RealType median(const fisher_f_distribution
& dist) //{ // Median of Fisher F distribution is not defined. // return tools::domain_error
(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits
::quiet_NaN()); // } // median // Now implemented via quantile(half) in derived accessors. template
inline RealType skewness(const fisher_f_distribution
& dist) { static const char* function = "boost::math::skewness(fisher_f_distribution<%1%> const&)"; BOOST_MATH_STD_USING // ADL of std names // See http://mathworld.wolfram.com/F-Distribution.html RealType df1 = dist.degrees_of_freedom1(); RealType df2 = dist.degrees_of_freedom2(); // Error check: RealType error_result; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy())) return error_result; if(df2 <= 6) { return policies::raise_domain_error
( function, "Second degree of freedom was %1% but must be > 6 in order for the distribution to have a skewness.", df2, Policy()); } return 2 * (df2 + 2 * df1 - 2) * sqrt((2 * df2 - 8) / (df1 * (df2 + df1 - 2))) / (df2 - 6); } template
RealType kurtosis_excess(const fisher_f_distribution
& dist); template
inline RealType kurtosis(const fisher_f_distribution
& dist) { return 3 + kurtosis_excess(dist); } template
inline RealType kurtosis_excess(const fisher_f_distribution
& dist) { static const char* function = "boost::math::kurtosis_excess(fisher_f_distribution<%1%> const&)"; // See http://mathworld.wolfram.com/F-Distribution.html RealType df1 = dist.degrees_of_freedom1(); RealType df2 = dist.degrees_of_freedom2(); // Error check: RealType error_result; if(false == detail::check_df( function, df1, &error_result, Policy()) && detail::check_df( function, df2, &error_result, Policy())) return error_result; if(df2 <= 8) { return policies::raise_domain_error
( function, "Second degree of freedom was %1% but must be > 8 in order for the distribution to have a kutosis.", df2, Policy()); } RealType df2_2 = df2 * df2; RealType df1_2 = df1 * df1; RealType n = -16 + 20 * df2 - 8 * df2_2 + df2_2 * df2 + 44 * df1 - 32 * df2 * df1 + 5 * df2_2 * df1 - 22 * df1_2 + 5 * df2 * df1_2; n *= 12; RealType d = df1 * (df2 - 6) * (df2 - 8) * (df1 + df2 - 2); return n / d; } } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include
#endif // BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP
fisher_f.hpp
Page URL
File URL
Prev
11/23
Next
Download
( 14 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.