DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// boost\math\distributions\bernoulli.hpp // Copyright John Maddock 2006. // Copyright Paul A. Bristow 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // http://en.wikipedia.org/wiki/bernoulli_distribution // http://mathworld.wolfram.com/BernoulliDistribution.html // bernoulli distribution is the discrete probability distribution of // the number (k) of successes, in a single Bernoulli trials. // It is a version of the binomial distribution when n = 1. // But note that the bernoulli distribution // (like others including the poisson, binomial & negative binomial) // is strictly defined as a discrete function: only integral values of k are envisaged. // However because of the method of calculation using a continuous gamma function, // it is convenient to treat it as if a continous function, // and permit non-integral values of k. // To enforce the strict mathematical model, users should use floor or ceil functions // on k outside this function to ensure that k is integral. #ifndef BOOST_MATH_SPECIAL_BERNOULLI_HPP #define BOOST_MATH_SPECIAL_BERNOULLI_HPP #include
#include
#include
// complements #include
// error checks #include
// isnan. #include
namespace boost { namespace math { namespace bernoulli_detail { // Common error checking routines for bernoulli distribution functions: template
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& /* pol */) { if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1)) { *result = policies::raise_domain_error
( function, "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, Policy()); return false; } return true; } template
inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& /* pol */) { return check_success_fraction(function, p, result, Policy()); } template
inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol) { if(check_dist(function, p, result, Policy()) == false) { return false; } if(!(boost::math::isfinite)(k) || !((k == 0) || (k == 1))) { *result = policies::raise_domain_error
( function, "Number of successes argument is %1%, but must be 0 or 1 !", k, pol); return false; } return true; } template
inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& /* pol */) { if(check_dist(function, p, result, Policy()) && detail::check_probability(function, prob, result, Policy()) == false) { return false; } return true; } } // namespace bernoulli_detail template
> class bernoulli_distribution { public: typedef RealType value_type; typedef Policy policy_type; bernoulli_distribution(RealType p = 0.5) : m_p(p) { // Default probability = half suits 'fair' coin tossing // where probability of heads == probability of tails. RealType result; // of checks. bernoulli_detail::check_dist( "boost::math::bernoulli_distribution<%1%>::bernoulli_distribution", m_p, &result, Policy()); } // bernoulli_distribution constructor. RealType success_fraction() const { // Probability. return m_p; } private: RealType m_p; // success_fraction }; // template
class bernoulli_distribution typedef bernoulli_distribution
bernoulli; template
inline const std::pair
range(const bernoulli_distribution
& /* dist */) { // Range of permissible values for random variable k = {0, 1}. using boost::math::tools::max_value; return std::pair
(0, 1); } template
inline const std::pair
support(const bernoulli_distribution
& /* dist */) { // Range of supported values for random variable k = {0, 1}. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. return std::pair
(0, 1); } template
inline RealType mean(const bernoulli_distribution
& dist) { // Mean of bernoulli distribution = p (n = 1). return dist.success_fraction(); } // mean // Rely on dereived_accessors quantile(half) //template
//inline RealType median(const bernoulli_distribution
& dist) //{ // Median of bernoulli distribution is not defined. // return tools::domain_error
(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits
::quiet_NaN()); //} // median template
inline RealType variance(const bernoulli_distribution
& dist) { // Variance of bernoulli distribution =p * q. return dist.success_fraction() * (1 - dist.success_fraction()); } // variance template
RealType pdf(const bernoulli_distribution
& dist, const RealType& k) { // Probability Density/Mass Function. BOOST_FPU_EXCEPTION_GUARD // Error check: RealType result; // of checks. if(false == bernoulli_detail::check_dist_and_k( "boost::math::pdf(bernoulli_distribution<%1%>, %1%)", dist.success_fraction(), // 0 to 1 k, // 0 or 1 &result, Policy())) { return result; } // Assume k is integral. if (k == 0) { return 1 - dist.success_fraction(); // 1 - p } else // k == 1 { return dist.success_fraction(); // p } } // pdf template
inline RealType cdf(const bernoulli_distribution
& dist, const RealType& k) { // Cumulative Distribution Function Bernoulli. RealType p = dist.success_fraction(); // Error check: RealType result; if(false == bernoulli_detail::check_dist_and_k( "boost::math::cdf(bernoulli_distribution<%1%>, %1%)", p, k, &result, Policy())) { return result; } if (k == 0) { return 1 - p; } else { // k == 1 return 1; } } // bernoulli cdf template
inline RealType cdf(const complemented2_type
, RealType>& c) { // Complemented Cumulative Distribution Function bernoulli. RealType const& k = c.param; bernoulli_distribution
const& dist = c.dist; RealType p = dist.success_fraction(); // Error checks: RealType result; if(false == bernoulli_detail::check_dist_and_k( "boost::math::cdf(bernoulli_distribution<%1%>, %1%)", p, k, &result, Policy())) { return result; } if (k == 0) { return p; } else { // k == 1 return 0; } } // bernoulli cdf complement template
inline RealType quantile(const bernoulli_distribution
& dist, const RealType& p) { // Quantile or Percent Point Bernoulli function. // Return the number of expected successes k either 0 or 1. // for a given probability p. RealType result; // of error checks: if(false == bernoulli_detail::check_dist_and_prob( "boost::math::quantile(bernoulli_distribution<%1%>, %1%)", dist.success_fraction(), p, &result, Policy())) { return result; } if (p <= (1 - dist.success_fraction())) { // p <= pdf(dist, 0) == cdf(dist, 0) return 0; } else { return 1; } } // quantile template
inline RealType quantile(const complemented2_type
, RealType>& c) { // Quantile or Percent Point bernoulli function. // Return the number of expected successes k for a given // complement of the probability q. // // Error checks: RealType q = c.param; const bernoulli_distribution
& dist = c.dist; RealType result; if(false == bernoulli_detail::check_dist_and_prob( "boost::math::quantile(bernoulli_distribution<%1%>, %1%)", dist.success_fraction(), q, &result, Policy())) { return result; } if (q <= 1 - dist.success_fraction()) { // // q <= cdf(complement(dist, 0)) == pdf(dist, 0) return 1; } else { return 0; } } // quantile complemented. template
inline RealType mode(const bernoulli_distribution
& dist) { return static_cast
((dist.success_fraction() <= 0.5) ? 0 : 1); // p = 0.5 can be 0 or 1 } template
inline RealType skewness(const bernoulli_distribution
& dist) { BOOST_MATH_STD_USING; // Aid ADL for sqrt. RealType p = dist.success_fraction(); return (1 - 2 * p) / sqrt(p * (1 - p)); } template
inline RealType kurtosis_excess(const bernoulli_distribution
& dist) { RealType p = dist.success_fraction(); // Note Wolfram says this is kurtosis in text, but gamma2 is the kurtosis excess, // and Wikipedia also says this is the kurtosis excess formula. // return (6 * p * p - 6 * p + 1) / (p * (1 - p)); // But Wolfram kurtosis article gives this simpler formula for kurtosis excess: return 1 / (1 - p) + 1/p -6; } template
inline RealType kurtosis(const bernoulli_distribution
& dist) { RealType p = dist.success_fraction(); return 1 / (1 - p) + 1/p -6 + 3; // Simpler than: // return (6 * p * p - 6 * p + 1) / (p * (1 - p)) + 3; } } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include
#endif // BOOST_MATH_SPECIAL_BERNOULLI_HPP
bernoulli.hpp
Page URL
File URL
Prev 1/23
Next
Download
( 11 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.