DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// (C) Copyright John Maddock 2005. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED #define BOOST_MATH_COMPLEX_ATANH_INCLUDED #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED # include
#endif #ifndef BOOST_MATH_LOG1P_INCLUDED # include
#endif #include
#ifdef BOOST_NO_STDC_NAMESPACE namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } #endif namespace boost{ namespace math{ template
std::complex
atanh(const std::complex
& z) { // // References: // // Eric W. Weisstein. "Inverse Hyperbolic Tangent." // From MathWorld--A Wolfram Web Resource. // http://mathworld.wolfram.com/InverseHyperbolicTangent.html // // Also: The Wolfram Functions Site, // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/ // // Also "Abramowitz and Stegun. Handbook of Mathematical Functions." // at : http://jove.prohosting.com/~skripty/toc.htm // static const T half_pi = static_cast
(1.57079632679489661923132169163975144L); static const T pi = static_cast
(3.141592653589793238462643383279502884197L); static const T one = static_cast
(1.0L); static const T two = static_cast
(2.0L); static const T four = static_cast
(4.0L); static const T zero = static_cast
(0); static const T a_crossover = static_cast
(0.3L); T x = std::fabs(z.real()); T y = std::fabs(z.imag()); T real, imag; // our results T safe_upper = detail::safe_max(two); T safe_lower = detail::safe_min(static_cast
(2)); // // Begin by handling the special cases specified in C99: // if(detail::test_is_nan(x)) { if(detail::test_is_nan(y)) return std::complex
(x, x); else if(std::numeric_limits
::has_infinity && (y == std::numeric_limits
::infinity())) return std::complex
(0, ((z.imag() < 0) ? -half_pi : half_pi)); else return std::complex
(x, x); } else if(detail::test_is_nan(y)) { if(x == 0) return std::complex
(x, y); if(std::numeric_limits
::has_infinity && (x == std::numeric_limits
::infinity())) return std::complex
(0, y); else return std::complex
(y, y); } else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper)) { T xx = x*x; T yy = y*y; T x2 = x * two; /// // The real part is given by: // // real(atanh(z)) == log((1 + x^2 + y^2 + 2x) / (1 + x^2 + y^2 - 2x)) // // However, when x is either large (x > 1/E) or very small // (x < E) then this effectively simplifies // to log(1), leading to wildly inaccurate results. // By dividing the above (top and bottom) by (1 + x^2 + y^2) we get: // // real(atanh(z)) == log((1 + (2x / (1 + x^2 + y^2))) / (1 - (-2x / (1 + x^2 + y^2)))) // // which is much more sensitive to the value of x, when x is not near 1 // (remember we can compute log(1+x) for small x very accurately). // // The cross-over from one method to the other has to be determined // experimentally, the value used below appears correct to within a // factor of 2 (and there are larger errors from other parts // of the input domain anyway). // T alpha = two*x / (one + xx + yy); if(alpha < a_crossover) { real = boost::math::log1p(alpha) - boost::math::log1p(-alpha); } else { T xm1 = x - one; real = boost::math::log1p(x2 + xx + yy) - std::log(xm1*xm1 + yy); } real /= four; if(z.real() < 0) real = -real; imag = std::atan2((y * two), (one - xx - yy)); imag /= two; if(z.imag() < 0) imag = -imag; } else { // // This section handles exception cases that would normally cause // underflow or overflow in the main formulas. // // Begin by working out the real part, we need to approximate // alpha = 2x / (1 + x^2 + y^2) // without either overflow or underflow in the squared terms. // T alpha = 0; if(x >= safe_upper) { // this is really a test for infinity, // but we may not have the necessary numeric_limits support: if((x > (std::numeric_limits
::max)()) || (y > (std::numeric_limits
::max)())) { alpha = 0; } else if(y >= safe_upper) { // Big x and y: divide alpha through by x*y: alpha = (two/y) / (x/y + y/x); } else if(y > one) { // Big x: divide through by x: alpha = two / (x + y*y/x); } else { // Big x small y, as above but neglect y^2/x: alpha = two/x; } } else if(y >= safe_upper) { if(x > one) { // Big y, medium x, divide through by y: alpha = (two*x/y) / (y + x*x/y); } else { // Small x and y, whatever alpha is, it's too small to calculate: alpha = 0; } } else { // one or both of x and y are small, calculate divisor carefully: T div = one; if(x > safe_lower) div += x*x; if(y > safe_lower) div += y*y; alpha = two*x/div; } if(alpha < a_crossover) { real = boost::math::log1p(alpha) - boost::math::log1p(-alpha); } else { // We can only get here as a result of small y and medium sized x, // we can simply neglect the y^2 terms: BOOST_ASSERT(x >= safe_lower); BOOST_ASSERT(x <= safe_upper); //BOOST_ASSERT(y <= safe_lower); T xm1 = x - one; real = std::log(1 + two*x + x*x) - std::log(xm1*xm1); } real /= four; if(z.real() < 0) real = -real; // // Now handle imaginary part, this is much easier, // if x or y are large, then the formula: // atan2(2y, 1 - x^2 - y^2) // evaluates to +-(PI - theta) where theta is negligible compared to PI. // if((x >= safe_upper) || (y >= safe_upper)) { imag = pi; } else if(x <= safe_lower) { // // If both x and y are small then atan(2y), // otherwise just x^2 is negligible in the divisor: // if(y <= safe_lower) imag = std::atan2(two*y, one); else { if((y == zero) && (x == zero)) imag = 0; else imag = std::atan2(two*y, one - y*y); } } else { // // y^2 is negligible: // if((y == zero) && (x == one)) imag = 0; else imag = std::atan2(two*y, 1 - x*x); } imag /= two; if(z.imag() < 0) imag = -imag; } return std::complex
(real, imag); } } } // namespaces #endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED
atanh.hpp
Page URL
File URL
Prev
6/8
Next
Download
( 7 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.