DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTERPROCESS_FLAT_SET_HPP #define BOOST_INTERPROCESS_FLAT_SET_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace interprocess { /// @cond // Forward declarations of operators < and ==, needed for friend declaration. template
class flat_set; template
inline bool operator==(const flat_set
& x, const flat_set
& y); template
inline bool operator<(const flat_set
& x, const flat_set
& y); /// @endcond //! flat_set is a Sorted Associative Container that stores objects of type Key. //! flat_set is a Simple Associative Container, meaning that its value type, //! as well as its key type, is Key. It is also a Unique Associative Container, //! meaning that no two elements are the same. //! //! flat_set is similar to std::set but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_set invalidates //! previous iterators and references //! //! Erasing an element of a flat_set invalidates iterators and references //! pointing to elements that come after (their keys are bigger) the erased element. template
class flat_set { /// @cond private: typedef detail::flat_tree
, Pred, Alloc> tree_t; tree_t m_flat_tree; // flat tree representing flat_set /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::value_compare value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //!
Effects
: Constructs an empty flat_map using the specified //! comparison object and allocator. //! //!
Complexity
: Constant. explicit flat_set(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) {} //!
Effects
: Constructs an empty map using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //!
Complexity
: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template
flat_set(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) { m_flat_tree.insert_unique(first, last); } //!
Effects
: Copy constructs a map. //! //!
Complexity
: Linear in x.size(). flat_set(const flat_set
& x) : m_flat_tree(x.m_flat_tree) {} //!
Effects
: Move constructs a map. Constructs *this using x's resources. //! //!
Complexity
: Construct. //! //!
Postcondition
: x is emptied. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_set(const detail::moved_object
>& mx) : m_flat_tree(move(mx.get().m_flat_tree)) {} #else flat_set(flat_set
&& mx) : m_flat_tree(move(mx.m_flat_tree)) {} #endif //!
Effects
: Makes *this a copy of x. //! //!
Complexity
: Linear in x.size(). flat_set
& operator=(const flat_set
& x) { m_flat_tree = x.m_flat_tree; return *this; } //!
Effects
: Makes *this a copy of x. //! //!
Complexity
: Linear in x.size(). #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_set
& operator=(const detail::moved_object
> &mx) { m_flat_tree = move(mx.get().m_flat_tree); return *this; } #else flat_set
& operator=(flat_set
&&mx) { m_flat_tree = move(mx.m_flat_tree); return *this; } #endif //!
Effects
: Returns the comparison object out //! of which a was constructed. //! //!
Complexity
: Constant. key_compare key_comp() const { return m_flat_tree.key_comp(); } //!
Effects
: Returns an object of value_compare constructed out //! of the comparison object. //! //!
Complexity
: Constant. value_compare value_comp() const { return m_flat_tree.key_comp(); } //!
Effects
: Returns a copy of the Allocator that //! was passed to the object�s constructor. //! //!
Complexity
: Constant. allocator_type get_allocator() const { return m_flat_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_flat_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_flat_tree.get_stored_allocator(); } //!
Effects
: Returns an iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator begin() { return m_flat_tree.begin(); } //!
Effects
: Returns a const_iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator begin() const { return m_flat_tree.begin(); } //!
Effects
: Returns an iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator end() { return m_flat_tree.end(); } //!
Effects
: Returns a const_iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator end() const { return m_flat_tree.end(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rbegin() { return m_flat_tree.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rbegin() const { return m_flat_tree.rbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rend() { return m_flat_tree.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rend() const { return m_flat_tree.rend(); } //!
Effects
: Returns true if the container contains no elements. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. bool empty() const { return m_flat_tree.empty(); } //!
Effects
: Returns the number of the elements contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type size() const { return m_flat_tree.size(); } //!
Effects
: Returns the largest possible size of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. void swap(flat_set
& x) { m_flat_tree.swap(x.m_flat_tree); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
>& mx) { this->swap(mx.get()); } #else void swap(flat_set
&& mx) { this->swap(mx); } #endif //!
Effects
: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //!
Returns
: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //!
Note
: If an element it's inserted it might invalidate elements. std::pair
insert(const value_type& x) { return m_flat_tree.insert_unique(x); } //!
Effects
: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //!
Returns
: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //!
Note
: If an element it's inserted it might invalidate elements. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE std::pair
insert(const detail::moved_object
& x) { return m_flat_tree.insert_unique(x); } #else std::pair
insert(value_type && x) { return m_flat_tree.insert_unique(move(x)); } #endif //!
Effects
: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //!
Note
: If an element it's inserted it might invalidate elements. iterator insert(iterator position, const value_type& x) { return m_flat_tree.insert_unique(position, x); } //!
Effects
: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //!
Note
: If an element it's inserted it might invalidate elements. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator position, const detail::moved_object
& x) { return m_flat_tree.insert_unique(position, x); } #else iterator insert(iterator position, value_type && x) { return m_flat_tree.insert_unique(position, move(x)); } #endif //!
Requires
: i, j are not iterators into *this. //! //!
Effects
: inserts each element from the range [i,j) if and only //! if there is no element with key equivalent to the key of that element. //! //!
Complexity
: N log(size()+N) (N is the distance from i to j) //! search time plus N*size() insertion time. //! //!
Note
: If an element it's inserted it might invalidate elements. template
void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_unique(first, last); } //!
Effects
: Erases the element pointed to by position. //! //!
Returns
: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //!
Complexity
: Linear to the elements with keys bigger than position //! //!
Note
: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return m_flat_tree.erase(position); } //!
Effects
: Erases all elements in the container with key equivalent to x. //! //!
Returns
: Returns the number of erased elements. //! //!
Complexity
: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //!
Effects
: Erases all the elements in the range [first, last). //! //!
Returns
: Returns last. //! //!
Complexity
: size()*N where N is the distance from first to last. //! //!
Complexity
: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return m_flat_tree.erase(first, last); } //!
Effects
: erase(a.begin(),a.end()). //! //!
Postcondition
: size() == 0. //! //!
Complexity
: linear in size(). void clear() { m_flat_tree.clear(); } //!
Effects
: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //!
Throws
: If memory allocation throws, or T's copy constructor throws. //! //!
Complexity
: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //!
Returns
: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. iterator find(const key_type& x) { return m_flat_tree.find(x); } //!
Returns
: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic.s const_iterator find(const key_type& x) const { return m_flat_tree.find(x); } //!
Returns
: The number of elements with key equivalent to x. //! //!
Complexity
: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; } //!
Returns
: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator lower_bound(const key_type& x) { return m_flat_tree.lower_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_flat_tree.lower_bound(x); } //!
Returns
: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator upper_bound(const key_type& x) { return m_flat_tree.upper_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_flat_tree.upper_bound(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) const { return m_flat_tree.equal_range(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) { return m_flat_tree.equal_range(x); } //!
Effects
: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //!
Effects
: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //!
Throws
: If memory allocation allocation throws or T's copy constructor throws. //! //!
Note
: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template
friend bool operator== (const flat_set
&, const flat_set
&); template
friend bool operator< (const flat_set
&, const flat_set
&); /// @endcond }; template
inline bool operator==(const flat_set
& x, const flat_set
& y) { return x.m_flat_tree == y.m_flat_tree; } template
inline bool operator<(const flat_set
& x, const flat_set
& y) { return x.m_flat_tree < y.m_flat_tree; } template
inline bool operator!=(const flat_set
& x, const flat_set
& y) { return !(x == y); } template
inline bool operator>(const flat_set
& x, const flat_set
& y) { return y < x; } template
inline bool operator<=(const flat_set
& x, const flat_set
& y) { return !(y < x); } template
inline bool operator>=(const flat_set
& x, const flat_set
& y) { return !(x < y); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
inline void swap(flat_set
& x, flat_set
& y) { x.swap(y); } template
inline void swap(const detail::moved_object
>& x, flat_set
& y) { x.get().swap(y); } template
inline void swap(flat_set
& x, const detail::moved_object
>& y) { x.swap(y.get()); } #else template
inline void swap(flat_set
&&x, flat_set
&&y) { x.swap(y); } #endif /// @cond //!This class is movable template
struct is_movable
> { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value && has_trivial_destructor
::value }; }; // Forward declaration of operators < and ==, needed for friend declaration. template
class flat_multiset; template
inline bool operator==(const flat_multiset
& x, const flat_multiset
& y); template
inline bool operator<(const flat_multiset
& x, const flat_multiset
& y); /// @endcond template
class flat_multiset { /// @cond private: typedef detail::flat_tree
, Pred, Alloc> tree_t; tree_t m_flat_tree; // flat tree representing flat_multiset /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::value_compare value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; // allocation/deallocation explicit flat_multiset(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) {} template
flat_multiset(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) { m_flat_tree.insert_equal(first, last); } flat_multiset(const flat_multiset
& x) : m_flat_tree(x.m_flat_tree) {} #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_multiset(const detail::moved_object
>& x) : m_flat_tree(move(x.get().m_flat_tree)) {} #else flat_multiset(flat_multiset
&& x) : m_flat_tree(move(x.m_flat_tree)) {} #endif flat_multiset
& operator=(const flat_multiset
& x) { m_flat_tree = x.m_flat_tree; return *this; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_multiset
& operator=(const detail::moved_object
>& mx) { m_flat_tree = move(mx.get().m_flat_tree); return *this; } #else flat_multiset
& operator=(flat_multiset
&& mx) { m_flat_tree = move(mx.m_flat_tree); return *this; } #endif //!
Effects
: Returns the comparison object out //! of which a was constructed. //! //!
Complexity
: Constant. key_compare key_comp() const { return m_flat_tree.key_comp(); } //!
Effects
: Returns an object of value_compare constructed out //! of the comparison object. //! //!
Complexity
: Constant. value_compare value_comp() const { return m_flat_tree.key_comp(); } //!
Effects
: Returns a copy of the Allocator that //! was passed to the object�s constructor. //! //!
Complexity
: Constant. allocator_type get_allocator() const { return m_flat_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_flat_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_flat_tree.get_stored_allocator(); } //!
Effects
: Returns an iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator begin() { return m_flat_tree.begin(); } //!
Effects
: Returns a const_iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator begin() const { return m_flat_tree.begin(); } //!
Effects
: Returns an iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator end() { return m_flat_tree.end(); } //!
Effects
: Returns a const_iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator end() const { return m_flat_tree.end(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rbegin() { return m_flat_tree.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rbegin() const { return m_flat_tree.rbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rend() { return m_flat_tree.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rend() const { return m_flat_tree.rend(); } //!
Effects
: Returns true if the container contains no elements. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. bool empty() const { return m_flat_tree.empty(); } //!
Effects
: Returns the number of the elements contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type size() const { return m_flat_tree.size(); } //!
Effects
: Returns the largest possible size of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. void swap(flat_multiset
& x) { m_flat_tree.swap(x.m_flat_tree); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
>& mx) { this->swap(mx.get()); } #else void swap(flat_multiset
&& mx) { this->swap(mx); } #endif //!
Effects
: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //!
Complexity
: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //!
Note
: If an element it's inserted it might invalidate elements. iterator insert(const value_type& x) { return m_flat_tree.insert_equal(x); } //!
Effects
: Inserts a new value_type move constructed from x //! and returns the iterator pointing to the newly inserted element. //! //!
Complexity
: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //!
Note
: If an element it's inserted it might invalidate elements. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(const detail::moved_object
& x) { return m_flat_tree.insert_equal(x); } #else iterator insert(value_type && x) { return m_flat_tree.insert_equal(move(x)); } #endif //!
Effects
: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //!
Note
: If an element it's inserted it might invalidate elements. iterator insert(iterator position, const value_type& x) { return m_flat_tree.insert_equal(position, x); } //!
Effects
: Inserts a new value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //!
Note
: If an element it's inserted it might invalidate elements. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator position, const detail::moved_object
& x) { return m_flat_tree.insert_equal(position, x); } #else iterator insert(iterator position, value_type && x) { return m_flat_tree.insert_equal(position, move(x)); } #endif //!
Requires
: i, j are not iterators into *this. //! //!
Effects
: inserts each element from the range [i,j) . //! //!
Complexity
: N log(size()+N) (N is the distance from i to j) //! search time plus N*size() insertion time. //! //!
Note
: If an element it's inserted it might invalidate elements. template
void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_equal(first, last); } //!
Effects
: Erases the element pointed to by position. //! //!
Returns
: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //!
Complexity
: Linear to the elements with keys bigger than position //! //!
Note
: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return m_flat_tree.erase(position); } //!
Effects
: Erases all elements in the container with key equivalent to x. //! //!
Returns
: Returns the number of erased elements. //! //!
Complexity
: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //!
Effects
: Erases all the elements in the range [first, last). //! //!
Returns
: Returns last. //! //!
Complexity
: size()*N where N is the distance from first to last. //! //!
Complexity
: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return m_flat_tree.erase(first, last); } //!
Effects
: erase(a.begin(),a.end()). //! //!
Postcondition
: size() == 0. //! //!
Complexity
: linear in size(). void clear() { m_flat_tree.clear(); } //!
Effects
: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //!
Throws
: If memory allocation throws, or T's copy constructor throws. //! //!
Complexity
: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //!
Returns
: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. iterator find(const key_type& x) { return m_flat_tree.find(x); } //!
Returns
: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic.s const_iterator find(const key_type& x) const { return m_flat_tree.find(x); } //!
Returns
: The number of elements with key equivalent to x. //! //!
Complexity
: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.count(x); } //!
Returns
: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator lower_bound(const key_type& x) { return m_flat_tree.lower_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_flat_tree.lower_bound(x); } //!
Returns
: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator upper_bound(const key_type& x) { return m_flat_tree.upper_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_flat_tree.upper_bound(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) const { return m_flat_tree.equal_range(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) { return m_flat_tree.equal_range(x); } //!
Effects
: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //!
Effects
: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //!
Throws
: If memory allocation allocation throws or T's copy constructor throws. //! //!
Note
: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template
friend bool operator== (const flat_multiset
&, const flat_multiset
&); template
friend bool operator< (const flat_multiset
&, const flat_multiset
&); /// @endcond }; template
inline bool operator==(const flat_multiset
& x, const flat_multiset
& y) { return x.m_flat_tree == y.m_flat_tree; } template
inline bool operator<(const flat_multiset
& x, const flat_multiset
& y) { return x.m_flat_tree < y.m_flat_tree; } template
inline bool operator!=(const flat_multiset
& x, const flat_multiset
& y) { return !(x == y); } template
inline bool operator>(const flat_multiset
& x, const flat_multiset
& y) { return y < x; } template
inline bool operator<=(const flat_multiset
& x, const flat_multiset
& y) { return !(y < x); } template
inline bool operator>=(const flat_multiset
& x, const flat_multiset
& y) { return !(x < y); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
inline void swap(flat_multiset
& x, flat_multiset
& y) { x.swap(y); } template
inline void swap(const detail::moved_object
>& x, flat_multiset
& y) { x.get().swap(y); } template
inline void swap(flat_multiset
& x, const detail::moved_object
>& y) { x.swap(y.get()); } #else template
inline void swap(flat_multiset
&&x, flat_multiset
&&y) { x.swap(y); } #endif /// @cond //!This class is movable template
struct is_movable
> { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value && has_trivial_destructor
::value }; }; /// @endcond }} //namespace boost { namespace interprocess { #include
#endif /* BOOST_INTERPROCESS_FLAT_SET_HPP */
flat_set.hpp
Page URL
File URL
Prev
3/9
Next
Download
( 40 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.