DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// Copyright (C) 2005, 2006 Douglas Gregor
. // Use, modification and distribution is subject to the Boost Software // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) /** @file communicator.hpp * * This header defines the @c communicator class, which is the basis * of all communication within Boost.MPI, and provides point-to-point * communication operations. */ #ifndef BOOST_MPI_COMMUNICATOR_HPP #define BOOST_MPI_COMMUNICATOR_HPP #include
#include
#include
#include
#include
#include
#include
#include
// for std::range_error // For (de-)serializing sends and receives #include
#include
// For (de-)serializing skeletons and content #include
// For (de-)serializing arrays #include
#include
#include
#include
#ifdef BOOST_MSVC # pragma warning(push) # pragma warning(disable : 4800) // forcing to bool 'true' or 'false' #endif namespace boost { namespace mpi { /** * @brief A constant representing "any process." * * This constant may be used for the @c source parameter of @c receive * operations to indicate that a message may be received from any * source. */ const int any_source = MPI_ANY_SOURCE; /** * @brief A constant representing "any tag." * * This constant may be used for the @c tag parameter of @c receive * operations to indicate that a @c send with any tag will be matched * by the receive. */ const int any_tag = MPI_ANY_TAG; /** * @brief Enumeration used to describe how to adopt a C @c MPI_Comm into * a Boost.MPI communicator. * * The values for this enumeration determine how a Boost.MPI * communicator will behave when constructed with an MPI * communicator. The options are: * * - @c comm_duplicate: Duplicate the MPI_Comm communicator to * create a new communicator (e.g., with MPI_Comm_dup). This new * MPI_Comm communicator will be automatically freed when the * Boost.MPI communicator (and all copies of it) is destroyed. * * - @c comm_take_ownership: Take ownership of the communicator. It * will be freed automatically when all of the Boost.MPI * communicators go out of scope. This option must not be used with * MPI_COMM_WORLD. * * - @c comm_attach: The Boost.MPI communicator will reference the * existing MPI communicator but will not free it when the Boost.MPI * communicator goes out of scope. This option should only be used * when the communicator is managed by the user or MPI library * (e.g., MPI_COMM_WORLD). */ enum comm_create_kind { comm_duplicate, comm_take_ownership, comm_attach }; /** * INTERNAL ONLY * * Forward declaration of @c group needed for the @c group * constructor and accessor. */ class group; /** * INTERNAL ONLY * * Forward declaration of @c intercommunicator needed for the "cast" * from a communicator to an intercommunicator. */ class intercommunicator; /** * INTERNAL ONLY * * Forward declaration of @c graph_communicator needed for the "cast" * from a communicator to a graph communicator. */ class graph_communicator; /** * @brief A communicator that permits communication and * synchronization among a set of processes. * * The @c communicator class abstracts a set of communicating * processes in MPI. All of the processes that belong to a certain * communicator can determine the size of the communicator, their rank * within the communicator, and communicate with any other processes * in the communicator. */ class BOOST_MPI_DECL communicator { public: /** * Build a new Boost.MPI communicator for @c MPI_COMM_WORLD. * * Constructs a Boost.MPI communicator that attaches to @c * MPI_COMM_WORLD. This is the equivalent of constructing with * @c (MPI_COMM_WORLD, comm_attach). */ communicator(); /** * Build a new Boost.MPI communicator based on the MPI communicator * @p comm. * * @p comm may be any valid MPI communicator. If @p comm is * MPI_COMM_NULL, an empty communicator (that cannot be used for * communication) is created and the @p kind parameter is * ignored. Otherwise, the @p kind parameters determines how the * Boost.MPI communicator will be related to @p comm: * * - If @p kind is @c comm_duplicate, duplicate @c comm to create * a new communicator. This new communicator will be freed when * the Boost.MPI communicator (and all copies of it) is destroyed. * This option is only permitted if @p comm is a valid MPI * intracommunicator or if the underlying MPI implementation * supports MPI 2.0 (which supports duplication of * intercommunicators). * * - If @p kind is @c comm_take_ownership, take ownership of @c * comm. It will be freed automatically when all of the Boost.MPI * communicators go out of scope. This option must not be used * when @c comm is MPI_COMM_WORLD. * * - If @p kind is @c comm_attach, this Boost.MPI communicator * will reference the existing MPI communicator @p comm but will * not free @p comm when the Boost.MPI communicator goes out of * scope. This option should only be used when the communicator is * managed by the user or MPI library (e.g., MPI_COMM_WORLD). */ communicator(const MPI_Comm& comm, comm_create_kind kind); /** * Build a new Boost.MPI communicator based on a subgroup of another * MPI communicator. * * This routine will construct a new communicator containing all of * the processes from communicator @c comm that are listed within * the group @c subgroup. Equivalent to @c MPI_Comm_create. * * @param comm An MPI communicator. * * @param subgroup A subgroup of the MPI communicator, @p comm, for * which we will construct a new communicator. */ communicator(const communicator& comm, const boost::mpi::group& subgroup); /** * @brief Determine the rank of the executing process in a * communicator. * * This routine is equivalent to @c MPI_Comm_rank. * * @returns The rank of the process in the communicator, which * will be a value in [0, size()) */ int rank() const; /** * @brief Determine the number of processes in a communicator. * * This routine is equivalent to @c MPI_Comm_size. * * @returns The number of processes in the communicator. */ int size() const; /** * This routine constructs a new group whose members are the * processes within this communicator. Equivalent to * calling @c MPI_Comm_group. */ boost::mpi::group group() const; // ---------------------------------------------------------------- // Point-to-point communication // ---------------------------------------------------------------- /** * @brief Send data to another process. * * This routine executes a potentially blocking send with tag @p tag * to the process with rank @p dest. It can be received by the * destination process with a matching @c recv call. * * The given @p value must be suitable for transmission over * MPI. There are several classes of types that meet these * requirements: * * - Types with mappings to MPI data types: If @c * is_mpi_datatype
is convertible to @c mpl::true_, then @p * value will be transmitted using the MPI data type * @c get_mpi_datatype
(). All primitive C++ data types that have * MPI equivalents, e.g., @c int, @c float, @c char, @c double, * etc., have built-in mappings to MPI data types. You may turn a * Serializable type with fixed structure into an MPI data type by * specializing @c is_mpi_datatype for your type. * * - Serializable types: Any type that provides the @c serialize() * functionality required by the Boost.Serialization library can be * transmitted and received. * * - Packed archives and skeletons: Data that has been packed into * an @c mpi::packed_oarchive or the skeletons of data that have * been backed into an @c mpi::packed_skeleton_oarchive can be * transmitted, but will be received as @c mpi::packed_iarchive and * @c mpi::packed_skeleton_iarchive, respectively, to allow the * values (or skeletons) to be extracted by the destination process. * * - Content: Content associated with a previously-transmitted * skeleton can be transmitted by @c send and received by @c * recv. The receiving process may only receive content into the * content of a value that has been constructed with the matching * skeleton. * * For types that have mappings to an MPI data type (including the * concent of a type), an invocation of this routine will result in * a single MPI_Send call. For variable-length data, e.g., * serialized types and packed archives, two messages will be sent * via MPI_Send: one containing the length of the data and the * second containing the data itself. Note that the transmission * mode for variable-length data is an implementation detail that * is subject to change. * * @param dest The rank of the remote process to which the data * will be sent. * * @param tag The tag that will be associated with this message. Tags * may be any integer between zero and an implementation-defined * upper limit. This limit is accessible via @c environment::max_tag(). * * @param value The value that will be transmitted to the * receiver. The type @c T of this value must meet the aforementioned * criteria for transmission. */ template
void send(int dest, int tag, const T& value) const; /** * @brief Send the skeleton of an object. * * This routine executes a potentially blocking send with tag @p * tag to the process with rank @p dest. It can be received by the * destination process with a matching @c recv call. This variation * on @c send will be used when a send of a skeleton is explicitly * requested via code such as: * * @code * comm.send(dest, tag, skeleton(object)); * @endcode * * The semantics of this routine are equivalent to that of sending * a @c packed_skeleton_oarchive storing the skeleton of the @c * object. * * @param dest The rank of the remote process to which the skeleton * will be sent. * * @param tag The tag that will be associated with this message. Tags * may be any integer between zero and an implementation-defined * upper limit. This limit is accessible via @c environment::max_tag(). * * @param proxy The @c skeleton_proxy containing a reference to the * object whose skeleton will be transmitted. * */ template
void send(int dest, int tag, const skeleton_proxy
& proxy) const; /** * @brief Send an array of values to another process. * * This routine executes a potentially blocking send of an array of * data with tag @p tag to the process with rank @p dest. It can be * received by the destination process with a matching array @c * recv call. * * If @c T is an MPI datatype, an invocation of this routine will * be mapped to a single call to MPI_Send, using the datatype @c * get_mpi_datatype
(). * * @param dest The process rank of the remote process to which * the data will be sent. * * @param tag The tag that will be associated with this message. Tags * may be any integer between zero and an implementation-defined * upper limit. This limit is accessible via @c environment::max_tag(). * * @param values The array of values that will be transmitted to the * receiver. The type @c T of these values must be mapped to an MPI * data type. * * @param n The number of values stored in the array. The destination * process must call receive with at least this many elements to * correctly receive the message. */ template
void send(int dest, int tag, const T* values, int n) const; /** * @brief Send a message to another process without any data. * * This routine executes a potentially blocking send of a message * to another process. The message contains no extra data, and can * therefore only be received by a matching call to @c recv(). * * @param dest The process rank of the remote process to which * the message will be sent. * * @param tag The tag that will be associated with this message. Tags * may be any integer between zero and an implementation-defined * upper limit. This limit is accessible via @c environment::max_tag(). * */ void send(int dest, int tag) const; /** * @brief Receive data from a remote process. * * This routine blocks until it receives a message from the process @p * source with the given @p tag. The type @c T of the @p value must be * suitable for transmission over MPI, which includes serializable * types, types that can be mapped to MPI data types (including most * built-in C++ types), packed MPI archives, skeletons, and content * associated with skeletons; see the documentation of @c send for a * complete description. * * @param source The process that will be sending data. This will * either be a process rank within the communicator or the * constant @c any_source, indicating that we can receive the * message from any process. * * @param tag The tag that matches a particular kind of message sent * by the source process. This may be any tag value permitted by @c * send. Alternatively, the argument may be the constant @c any_tag, * indicating that this receive matches a message with any tag. * * @param value Will contain the value of the message after a * successful receive. The type of this value must match the value * transmitted by the sender, unless the sender transmitted a packed * archive or skeleton: in these cases, the sender transmits a @c * packed_oarchive or @c packed_skeleton_oarchive and the * destination receives a @c packed_iarchive or @c * packed_skeleton_iarchive, respectively. * * @returns Information about the received message. */ template
status recv(int source, int tag, T& value) const; /** * @brief Receive a skeleton from a remote process. * * This routine blocks until it receives a message from the process @p * source with the given @p tag containing a skeleton. * * @param source The process that will be sending data. This will * either be a process rank within the communicator or the constant * @c any_source, indicating that we can receive the message from * any process. * * @param tag The tag that matches a particular kind of message * sent by the source process. This may be any tag value permitted * by @c send. Alternatively, the argument may be the constant @c * any_tag, indicating that this receive matches a message with any * tag. * * @param proxy The @c skeleton_proxy containing a reference to the * object that will be reshaped to match the received skeleton. * * @returns Information about the received message. */ template
status recv(int source, int tag, const skeleton_proxy
& proxy) const; /** * @brief Receive a skeleton from a remote process. * * This routine blocks until it receives a message from the process @p * source with the given @p tag containing a skeleton. * * @param source The process that will be sending data. This will * either be a process rank within the communicator or the constant * @c any_source, indicating that we can receive the message from * any process. * * @param tag The tag that matches a particular kind of message * sent by the source process. This may be any tag value permitted * by @c send. Alternatively, the argument may be the constant @c * any_tag, indicating that this receive matches a message with any * tag. * * @param proxy The @c skeleton_proxy containing a reference to the * object that will be reshaped to match the received skeleton. * * @returns Information about the received message. */ template
status recv(int source, int tag, skeleton_proxy
& proxy) const; /** * @brief Receive an array of values from a remote process. * * This routine blocks until it receives an array of values from the * process @p source with the given @p tag. If the type @c T is * * @param source The process that will be sending data. This will * either be a process rank within the communicator or the * constant @c any_source, indicating that we can receive the * message from any process. * * @param tag The tag that matches a particular kind of message sent * by the source process. This may be any tag value permitted by @c * send. Alternatively, the argument may be the constant @c any_tag, * indicating that this receive matches a message with any tag. * * @param values Will contain the values in the message after a * successful receive. The type of these elements must match the * type of the elements transmitted by the sender. * * @param n The number of values that can be stored into the @p * values array. This shall not be smaller than the number of * elements transmitted by the sender. * * @throws std::range_error if the message to be received contains * more than @p n values. * * @returns Information about the received message. */ template
status recv(int source, int tag, T* values, int n) const; /** * @brief Receive a message from a remote process without any data. * * This routine blocks until it receives a message from the process * @p source with the given @p tag. * * @param source The process that will be sending the message. This * will either be a process rank within the communicator or the * constant @c any_source, indicating that we can receive the * message from any process. * * @param tag The tag that matches a particular kind of message * sent by the source process. This may be any tag value permitted * by @c send. Alternatively, the argument may be the constant @c * any_tag, indicating that this receive matches a message with any * tag. * * @returns Information about the received message. */ status recv(int source, int tag) const; /** * @brief Send a message to a remote process without blocking. * * The @c isend method is functionality identical to the @c send * method and transmits data in the same way, except that @c isend * will not block while waiting for the data to be * transmitted. Instead, a request object will be immediately * returned, allowing one to query the status of the communication * or wait until it has completed. * * @param dest The rank of the remote process to which the data * will be sent. * * @param tag The tag that will be associated with this message. Tags * may be any integer between zero and an implementation-defined * upper limit. This limit is accessible via @c environment::max_tag(). * * @param value The value that will be transmitted to the * receiver. The type @c T of this value must meet the aforementioned * criteria for transmission. * * @returns a @c request object that describes this communication. */ template
request isend(int dest, int tag, const T& value) const; /** * @brief Send the skeleton of an object without blocking. * * This routine is functionally identical to the @c send method for * @c skeleton_proxy objects except that @c isend will not block * while waiting for the data to be transmitted. Instead, a request * object will be immediately returned, allowing one to query the * status of the communication or wait until it has completed. * * The semantics of this routine are equivalent to a non-blocking * send of a @c packed_skeleton_oarchive storing the skeleton of * the @c object. * * @param dest The rank of the remote process to which the skeleton * will be sent. * * @param tag The tag that will be associated with this message. Tags * may be any integer between zero and an implementation-defined * upper limit. This limit is accessible via @c environment::max_tag(). * * @param proxy The @c skeleton_proxy containing a reference to the * object whose skeleton will be transmitted. * * @returns a @c request object that describes this communication. */ template
request isend(int dest, int tag, const skeleton_proxy
& proxy) const; /** * @brief Send an array of values to another process without * blocking. * * This routine is functionally identical to the @c send method for * arrays except that @c isend will not block while waiting for the * data to be transmitted. Instead, a request object will be * immediately returned, allowing one to query the status of the * communication or wait until it has completed. * * @param dest The process rank of the remote process to which * the data will be sent. * * @param tag The tag that will be associated with this message. Tags * may be any integer between zero and an implementation-defined * upper limit. This limit is accessible via @c environment::max_tag(). * * @param values The array of values that will be transmitted to the * receiver. The type @c T of these values must be mapped to an MPI * data type. * * @param n The number of values stored in the array. The destination * process must call receive with at least this many elements to * correctly receive the message. * * @returns a @c request object that describes this communication. */ template
request isend(int dest, int tag, const T* values, int n) const; /** * @brief Send a message to another process without any data * without blocking. * * This routine is functionally identical to the @c send method for * sends with no data, except that @c isend will not block while * waiting for the message to be transmitted. Instead, a request * object will be immediately returned, allowing one to query the * status of the communication or wait until it has completed. * * @param dest The process rank of the remote process to which * the message will be sent. * * @param tag The tag that will be associated with this message. Tags * may be any integer between zero and an implementation-defined * upper limit. This limit is accessible via @c environment::max_tag(). * * * @returns a @c request object that describes this communication. */ request isend(int dest, int tag) const; /** * @brief Prepare to receive a message from a remote process. * * The @c irecv method is functionally identical to the @c recv * method and receive data in the same way, except that @c irecv * will not block while waiting for data to be * transmitted. Instead, it immediately returns a request object * that allows one to query the status of the receive or wait until * it has completed. * * @param source The process that will be sending data. This will * either be a process rank within the communicator or the * constant @c any_source, indicating that we can receive the * message from any process. * * @param tag The tag that matches a particular kind of message sent * by the source process. This may be any tag value permitted by @c * send. Alternatively, the argument may be the constant @c any_tag, * indicating that this receive matches a message with any tag. * * @param value Will contain the value of the message after a * successful receive. The type of this value must match the value * transmitted by the sender, unless the sender transmitted a packed * archive or skeleton: in these cases, the sender transmits a @c * packed_oarchive or @c packed_skeleton_oarchive and the * destination receives a @c packed_iarchive or @c * packed_skeleton_iarchive, respectively. * * @returns a @c request object that describes this communication. */ template
request irecv(int source, int tag, T& value) const; /** * @brief Initiate receipt of an array of values from a remote process. * * This routine initiates a receive operation for an array of values * transmitted by process @p source with the given @p tag. * * @param source The process that will be sending data. This will * either be a process rank within the communicator or the * constant @c any_source, indicating that we can receive the * message from any process. * * @param tag The tag that matches a particular kind of message sent * by the source process. This may be any tag value permitted by @c * send. Alternatively, the argument may be the constant @c any_tag, * indicating that this receive matches a message with any tag. * * @param values Will contain the values in the message after a * successful receive. The type of these elements must match the * type of the elements transmitted by the sender. * * @param n The number of values that can be stored into the @p * values array. This shall not be smaller than the number of * elements transmitted by the sender. * * @returns a @c request object that describes this communication. */ template
request irecv(int source, int tag, T* values, int n) const; /** * @brief Initiate receipt of a message from a remote process that * carries no data. * * This routine initiates a receive operation for a message from * process @p source with the given @p tag that carries no data. * * @param source The process that will be sending the message. This * will either be a process rank within the communicator or the * constant @c any_source, indicating that we can receive the * message from any process. * * @param tag The tag that matches a particular kind of message * sent by the source process. This may be any tag value permitted * by @c send. Alternatively, the argument may be the constant @c * any_tag, indicating that this receive matches a message with any * tag. * * @returns a @c request object that describes this communication. */ request irecv(int source, int tag) const; /** * @brief Waits until a message is available to be received. * * This operation waits until a message matching (@p source, @p tag) * is available to be received. It then returns information about * that message. The functionality is equivalent to @c MPI_Probe. To * check if a message is available without blocking, use @c iprobe. * * @param source Determine if there is a message available from * this rank. If @c any_source, then the message returned may come * from any source. * * @param tag Determine if there is a message available with the * given tag. If @c any_tag, then the message returned may have any * tag. * * @returns Returns information about the first message that * matches the given criteria. */ status probe(int source = any_source, int tag = any_tag) const; /** * @brief Determine if a message is available to be received. * * This operation determines if a message matching (@p source, @p * tag) is available to be received. If so, it returns information * about that message; otherwise, it returns immediately with an * empty optional. The functionality is equivalent to @c * MPI_Iprobe. To wait until a message is available, use @c wait. * * @param source Determine if there is a message available from * this rank. If @c any_source, then the message returned may come * from any source. * * @param tag Determine if there is a message available with the * given tag. If @c any_tag, then the message returned may have any * tag. * * @returns If a matching message is available, returns * information about that message. Otherwise, returns an empty * @c boost::optional. */ optional
iprobe(int source = any_source, int tag = any_tag) const; #ifdef barrier // Linux defines a function-like macro named "barrier". So, we need // to avoid expanding the macro when we define our barrier() // function. However, some C++ parsers (Doxygen, for instance) can't // handle this syntax, so we only use it when necessary. void (barrier)() const; #else /** * @brief Wait for all processes within a communicator to reach the * barrier. * * This routine is a collective operation that blocks each process * until all processes have entered it, then releases all of the * processes "simultaneously". It is equivalent to @c MPI_Barrier. */ void barrier() const; #endif /** @brief Determine if this communicator is valid for * communication. * * Evaluates @c true in a boolean context if this communicator is * valid for communication, i.e., does not represent * MPI_COMM_NULL. Otherwise, evaluates @c false. */ operator bool() const { return (bool)comm_ptr; } /** * @brief Access the MPI communicator associated with a Boost.MPI * communicator. * * This routine permits the implicit conversion from a Boost.MPI * communicator to an MPI communicator. * * @returns The associated MPI communicator. */ operator MPI_Comm() const; /** * Split the communicator into multiple, disjoint communicators * each of which is based on a particular color. This is a * collective operation that returns a new communicator that is a * subgroup of @p this. This routine is functionally equivalent to * @c MPI_Comm_split. * * @param color The color of this process. All processes with the * same @p color value will be placed into the same group. * * @returns A new communicator containing all of the processes in * @p this that have the same @p color. */ communicator split(int color) const; /** * Split the communicator into multiple, disjoint communicators * each of which is based on a particular color. This is a * collective operation that returns a new communicator that is a * subgroup of @p this. This routine is functionally equivalent to * @c MPI_Comm_split. * * @param color The color of this process. All processes with the * same @p color value will be placed into the same group. * * @param key A key value that will be used to determine the * ordering of processes with the same color in the resulting * communicator. If omitted, the rank of the processes in @p this * will determine the ordering of processes in the resulting * group. * * @returns A new communicator containing all of the processes in * @p this that have the same @p color. */ communicator split(int color, int key) const; /** * Determine if the communicator is in fact an intercommunicator * and, if so, return that intercommunicator. * * @returns an @c optional containing the intercommunicator, if this * communicator is in fact an intercommunicator. Otherwise, returns * an empty @c optional. */ optional
as_intercommunicator() const; /** * Determine if the communicator has a graph topology and, if so, * return that @c graph_communicator. Even though the communicators * have different types, they refer to the same underlying * communication space and can be used interchangeably for * communication. * * @returns an @c optional containing the graph communicator, if this * communicator does in fact have a graph topology. Otherwise, returns * an empty @c optional. */ optional
as_graph_communicator() const; /** * Determines whether this communicator has a Cartesian topology. */ bool has_cartesian_topology() const; #if 0 template
communicator with_cartesian_topology(const Extents& extents, bool periodic = false, bool reorder = false) const; template
communicator with_cartesian_topology(DimInputIterator first_dim, DimInputIterator last_dim, PeriodicInputIterator first_periodic, bool reorder = false); template
communicator with_cartesian_topology(const multi_array
& periods, bool reorder = false); #endif /** Abort all tasks in the group of this communicator. * * Makes a "best attempt" to abort all of the tasks in the group of * this communicator. Depending on the underlying MPI * implementation, this may either abort the entire program (and * possibly return @p errcode to the environment) or only abort * some processes, allowing the others to continue. Consult the * documentation for your MPI implementation. This is equivalent to * a call to @c MPI_Abort * * @param errcode The error code to return from aborted processes. * @returns Will not return. */ void abort(int errcode) const; protected: /** * INTERNAL ONLY * * Function object that frees an MPI communicator and deletes the * memory associated with it. Intended to be used as a deleter with * shared_ptr. */ struct comm_free { void operator()(MPI_Comm* comm) const { int finalized; BOOST_MPI_CHECK_RESULT(MPI_Finalized, (&finalized)); if (!finalized) BOOST_MPI_CHECK_RESULT(MPI_Comm_free, (comm)); delete comm; } }; /** * INTERNAL ONLY * * We're sending a type that has an associated MPI datatype, so we * map directly to that datatype. */ template
void send_impl(int dest, int tag, const T& value, mpl::true_) const; /** * INTERNAL ONLY * * We're sending a type that does not have an associated MPI * datatype, so it must be serialized then sent as MPI_PACKED data, * to be deserialized on the receiver side. */ template
void send_impl(int dest, int tag, const T& value, mpl::false_) const; /** * INTERNAL ONLY * * We're sending an array of a type that has an associated MPI * datatype, so we map directly to that datatype. */ template
void array_send_impl(int dest, int tag, const T* values, int n, mpl::true_) const; /** * INTERNAL ONLY * * We're sending an array of a type that does not have an associated * MPI datatype, so it must be serialized then sent as MPI_PACKED * data, to be deserialized on the receiver side. */ template
void array_send_impl(int dest, int tag, const T* values, int n, mpl::false_) const; /** * INTERNAL ONLY * * We're sending a type that has an associated MPI datatype, so we * map directly to that datatype. */ template
request isend_impl(int dest, int tag, const T& value, mpl::true_) const; /** * INTERNAL ONLY * * We're sending a type that does not have an associated MPI * datatype, so it must be serialized then sent as MPI_PACKED data, * to be deserialized on the receiver side. */ template
request isend_impl(int dest, int tag, const T& value, mpl::false_) const; /** * INTERNAL ONLY * * We're sending an array of a type that has an associated MPI * datatype, so we map directly to that datatype. */ template
request array_isend_impl(int dest, int tag, const T* values, int n, mpl::true_) const; /** * INTERNAL ONLY * * We're sending an array of a type that does not have an associated * MPI datatype, so it must be serialized then sent as MPI_PACKED * data, to be deserialized on the receiver side. */ template
request array_isend_impl(int dest, int tag, const T* values, int n, mpl::false_) const; /** * INTERNAL ONLY * * We're receiving a type that has an associated MPI datatype, so we * map directly to that datatype. */ template
status recv_impl(int source, int tag, T& value, mpl::true_) const; /** * INTERNAL ONLY * * We're receiving a type that does not have an associated MPI * datatype, so it must have been serialized then sent as * MPI_PACKED. We'll receive it and then deserialize. */ template
status recv_impl(int source, int tag, T& value, mpl::false_) const; /** * INTERNAL ONLY * * We're receiving an array of a type that has an associated MPI * datatype, so we map directly to that datatype. */ template
status array_recv_impl(int source, int tag, T* values, int n, mpl::true_) const; /** * INTERNAL ONLY * * We're receiving a type that does not have an associated MPI * datatype, so it must have been serialized then sent as * MPI_PACKED. We'll receive it and then deserialize. */ template
status array_recv_impl(int source, int tag, T* values, int n, mpl::false_) const; /** * INTERNAL ONLY * * We're receiving a type that has an associated MPI datatype, so we * map directly to that datatype. */ template
request irecv_impl(int source, int tag, T& value, mpl::true_) const; /** * INTERNAL ONLY * * We're receiving a type that does not have an associated MPI * datatype, so it must have been serialized then sent as * MPI_PACKED. We'll receive it and then deserialize. */ template
request irecv_impl(int source, int tag, T& value, mpl::false_) const; /** * INTERNAL ONLY * * We're receiving a type that has an associated MPI datatype, so we * map directly to that datatype. */ template
request array_irecv_impl(int source, int tag, T* values, int n, mpl::true_) const; /** * INTERNAL ONLY * * We're receiving a type that does not have an associated MPI * datatype, so it must have been serialized then sent as * MPI_PACKED. We'll receive it and then deserialize. */ template
request array_irecv_impl(int source, int tag, T* values, int n, mpl::false_) const; shared_ptr
comm_ptr; }; /** * @brief Determines whether two communicators are identical. * * Equivalent to calling @c MPI_Comm_compare and checking whether the * result is @c MPI_IDENT. * * @returns True when the two communicators refer to the same * underlying MPI communicator. */ BOOST_MPI_DECL bool operator==(const communicator& comm1, const communicator& comm2); /** * @brief Determines whether two communicators are different. * * @returns @c !(comm1 == comm2) */ inline bool operator!=(const communicator& comm1, const communicator& comm2) { return !(comm1 == comm2); } /************************************************************************ * Implementation details * ************************************************************************/ // Count elements in a message template
inline optional
status::count() const { return count_impl
(is_mpi_datatype
()); } template
optional
status::count_impl(mpl::true_) const { if (m_count != -1) return m_count; int return_value; BOOST_MPI_CHECK_RESULT(MPI_Get_count, (&m_status, get_mpi_datatype
(T()), &return_value)); if (return_value == MPI_UNDEFINED) return optional
(); else /* Cache the result. */ return m_count = return_value; } template
inline optional
status::count_impl(mpl::false_) const { if (m_count == -1) return optional
(); else return m_count; } // We're sending a type that has an associated MPI datatype, so we // map directly to that datatype. template
void communicator::send_impl(int dest, int tag, const T& value, mpl::true_) const { BOOST_MPI_CHECK_RESULT(MPI_Send, (const_cast
(&value), 1, get_mpi_datatype
(value), dest, tag, MPI_Comm(*this))); } // We're sending a type that does not have an associated MPI // datatype, so it must be serialized then sent as MPI_PACKED data, // to be deserialized on the receiver side. template
void communicator::send_impl(int dest, int tag, const T& value, mpl::false_) const { packed_oarchive oa(*this); oa << value; send(dest, tag, oa); } // Single-element receive may either send the element directly or // serialize it via a buffer. template
void communicator::send(int dest, int tag, const T& value) const { this->send_impl(dest, tag, value, is_mpi_datatype
()); } // We're sending an array of a type that has an associated MPI // datatype, so we map directly to that datatype. template
void communicator::array_send_impl(int dest, int tag, const T* values, int n, mpl::true_) const { BOOST_MPI_CHECK_RESULT(MPI_Send, (const_cast
(values), n, get_mpi_datatype
(*values), dest, tag, MPI_Comm(*this))); } // We're sending an array of a type that does not have an associated // MPI datatype, so it must be serialized then sent as MPI_PACKED // data, to be deserialized on the receiver side. template
void communicator::array_send_impl(int dest, int tag, const T* values, int n, mpl::false_) const { packed_oarchive oa(*this); oa << n << boost::serialization::make_array(values, n); send(dest, tag, oa); } // Array send must send the elements directly template
void communicator::send(int dest, int tag, const T* values, int n) const { this->array_send_impl(dest, tag, values, n, is_mpi_datatype
()); } // We're receiving a type that has an associated MPI datatype, so we // map directly to that datatype. template
status communicator::recv_impl(int source, int tag, T& value, mpl::true_) const { status stat; BOOST_MPI_CHECK_RESULT(MPI_Recv, (const_cast
(&value), 1, get_mpi_datatype
(value), source, tag, MPI_Comm(*this), &stat.m_status)); return stat; } template
status communicator::recv_impl(int source, int tag, T& value, mpl::false_) const { // Receive the message packed_iarchive ia(*this); status stat = recv(source, tag, ia); // Deserialize the data in the message ia >> value; return stat; } // Single-element receive may either receive the element directly or // deserialize it from a buffer. template
status communicator::recv(int source, int tag, T& value) const { return this->recv_impl(source, tag, value, is_mpi_datatype
()); } template
status communicator::array_recv_impl(int source, int tag, T* values, int n, mpl::true_) const { status stat; BOOST_MPI_CHECK_RESULT(MPI_Recv, (const_cast
(values), n, get_mpi_datatype
(*values), source, tag, MPI_Comm(*this), &stat.m_status)); return stat; } template
status communicator::array_recv_impl(int source, int tag, T* values, int n, mpl::false_) const { // Receive the message packed_iarchive ia(*this); status stat = recv(source, tag, ia); // Determine how much data we are going to receive int count; ia >> count; // Deserialize the data in the message boost::serialization::array
arr(values, count > n? n : count); ia >> arr; if (count > n) { boost::throw_exception( std::range_error("communicator::recv: message receive overflow")); } stat.m_count = count; return stat; } // Array receive must receive the elements directly into a buffer. template
status communicator::recv(int source, int tag, T* values, int n) const { return this->array_recv_impl(source, tag, values, n, is_mpi_datatype
()); } // We're sending a type that has an associated MPI datatype, so we // map directly to that datatype. template
request communicator::isend_impl(int dest, int tag, const T& value, mpl::true_) const { request req; BOOST_MPI_CHECK_RESULT(MPI_Isend, (const_cast
(&value), 1, get_mpi_datatype
(value), dest, tag, MPI_Comm(*this), &req.m_requests[0])); return req; } // We're sending a type that does not have an associated MPI // datatype, so it must be serialized then sent as MPI_PACKED data, // to be deserialized on the receiver side. template
request communicator::isend_impl(int dest, int tag, const T& value, mpl::false_) const { shared_ptr
archive(new packed_oarchive(*this)); *archive << value; request result = isend(dest, tag, *archive); result.m_data = archive; return result; } // Single-element receive may either send the element directly or // serialize it via a buffer. template
request communicator::isend(int dest, int tag, const T& value) const { return this->isend_impl(dest, tag, value, is_mpi_datatype
()); } template
request communicator::array_isend_impl(int dest, int tag, const T* values, int n, mpl::true_) const { request req; BOOST_MPI_CHECK_RESULT(MPI_Isend, (const_cast
(values), n, get_mpi_datatype
(*values), dest, tag, MPI_Comm(*this), &req.m_requests[0])); return req; } template
request communicator::array_isend_impl(int dest, int tag, const T* values, int n, mpl::false_) const { shared_ptr
archive(new packed_oarchive(*this)); *archive << n << boost::serialization::make_array(values, n); request result = isend(dest, tag, *archive); result.m_data = archive; return result; } // Array isend must send the elements directly template
request communicator::isend(int dest, int tag, const T* values, int n) const { return array_isend_impl(dest, tag, values, n, is_mpi_datatype
()); } namespace detail { /** * Internal data structure that stores everything required to manage * the receipt of serialized data via a request object. */ template
struct serialized_irecv_data { serialized_irecv_data(const communicator& comm, int source, int tag, T& value) : comm(comm), source(source), tag(tag), ia(comm), value(value) { } void deserialize(status& stat) { ia >> value; stat.m_count = 1; } communicator comm; int source; int tag; std::size_t count; packed_iarchive ia; T& value; }; template<> struct serialized_irecv_data
{ serialized_irecv_data(const communicator& comm, int source, int tag, packed_iarchive& ia) : comm(comm), source(source), tag(tag), ia(ia) { } void deserialize(status&) { /* Do nothing. */ } communicator comm; int source; int tag; std::size_t count; packed_iarchive& ia; }; /** * Internal data structure that stores everything required to manage * the receipt of an array of serialized data via a request object. */ template
struct serialized_array_irecv_data { serialized_array_irecv_data(const communicator& comm, int source, int tag, T* values, int n) : comm(comm), source(source), tag(tag), ia(comm), values(values), n(n) { } void deserialize(status& stat); communicator comm; int source; int tag; std::size_t count; packed_iarchive ia; T* values; int n; }; template
void serialized_array_irecv_data
::deserialize(status& stat) { // Determine how much data we are going to receive int count; ia >> count; // Deserialize the data in the message boost::serialization::array
arr(values, count > n? n : count); ia >> arr; if (count > n) { boost::throw_exception( std::range_error("communicator::recv: message receive overflow")); } stat.m_count = count; } } template
optional
request::handle_serialized_irecv(request* self, request_action action) { typedef detail::serialized_irecv_data
data_t; shared_ptr
data = static_pointer_cast
(self->m_data); if (action == ra_wait) { status stat; if (self->m_requests[1] == MPI_REQUEST_NULL) { // Wait for the count message to complete BOOST_MPI_CHECK_RESULT(MPI_Wait, (self->m_requests, &stat.m_status)); // Resize our buffer and get ready to receive its data data->ia.resize(data->count); BOOST_MPI_CHECK_RESULT(MPI_Irecv, (data->ia.address(), data->ia.size(), MPI_PACKED, stat.source(), stat.tag(), MPI_Comm(data->comm), self->m_requests + 1)); } // Wait until we have received the entire message BOOST_MPI_CHECK_RESULT(MPI_Wait, (self->m_requests + 1, &stat.m_status)); data->deserialize(stat); return stat; } else if (action == ra_test) { status stat; int flag = 0; if (self->m_requests[1] == MPI_REQUEST_NULL) { // Check if the count message has completed BOOST_MPI_CHECK_RESULT(MPI_Test, (self->m_requests, &flag, &stat.m_status)); if (flag) { // Resize our buffer and get ready to receive its data data->ia.resize(data->count); BOOST_MPI_CHECK_RESULT(MPI_Irecv, (data->ia.address(), data->ia.size(),MPI_PACKED, stat.source(), stat.tag(), MPI_Comm(data->comm), self->m_requests + 1)); } else return optional
(); // We have not finished yet } // Check if we have received the message data BOOST_MPI_CHECK_RESULT(MPI_Test, (self->m_requests + 1, &flag, &stat.m_status)); if (flag) { data->deserialize(stat); return stat; } else return optional
(); } else { return optional
(); } } template
optional
request::handle_serialized_array_irecv(request* self, request_action action) { typedef detail::serialized_array_irecv_data
data_t; shared_ptr
data = static_pointer_cast
(self->m_data); if (action == ra_wait) { status stat; if (self->m_requests[1] == MPI_REQUEST_NULL) { // Wait for the count message to complete BOOST_MPI_CHECK_RESULT(MPI_Wait, (self->m_requests, &stat.m_status)); // Resize our buffer and get ready to receive its data data->ia.resize(data->count); BOOST_MPI_CHECK_RESULT(MPI_Irecv, (data->ia.address(), data->ia.size(), MPI_PACKED, stat.source(), stat.tag(), MPI_Comm(data->comm), self->m_requests + 1)); } // Wait until we have received the entire message BOOST_MPI_CHECK_RESULT(MPI_Wait, (self->m_requests + 1, &stat.m_status)); data->deserialize(stat); return stat; } else if (action == ra_test) { status stat; int flag = 0; if (self->m_requests[1] == MPI_REQUEST_NULL) { // Check if the count message has completed BOOST_MPI_CHECK_RESULT(MPI_Test, (self->m_requests, &flag, &stat.m_status)); if (flag) { // Resize our buffer and get ready to receive its data data->ia.resize(data->count); BOOST_MPI_CHECK_RESULT(MPI_Irecv, (data->ia.address(), data->ia.size(),MPI_PACKED, stat.source(), stat.tag(), MPI_Comm(data->comm), self->m_requests + 1)); } else return optional
(); // We have not finished yet } // Check if we have received the message data BOOST_MPI_CHECK_RESULT(MPI_Test, (self->m_requests + 1, &flag, &stat.m_status)); if (flag) { data->deserialize(stat); return stat; } else return optional
(); } else { return optional
(); } } // We're receiving a type that has an associated MPI datatype, so we // map directly to that datatype. template
request communicator::irecv_impl(int source, int tag, T& value, mpl::true_) const { request req; BOOST_MPI_CHECK_RESULT(MPI_Irecv, (const_cast
(&value), 1, get_mpi_datatype
(value), source, tag, MPI_Comm(*this), &req.m_requests[0])); return req; } template
request communicator::irecv_impl(int source, int tag, T& value, mpl::false_) const { typedef detail::serialized_irecv_data
data_t; shared_ptr
data(new data_t(*this, source, tag, value)); request req; req.m_data = data; req.m_handler = request::handle_serialized_irecv
; BOOST_MPI_CHECK_RESULT(MPI_Irecv, (&data->count, 1, get_mpi_datatype
(data->count), source, tag, MPI_Comm(*this), &req.m_requests[0])); return req; } template
request communicator::irecv(int source, int tag, T& value) const { return this->irecv_impl(source, tag, value, is_mpi_datatype
()); } template
request communicator::array_irecv_impl(int source, int tag, T* values, int n, mpl::true_) const { request req; BOOST_MPI_CHECK_RESULT(MPI_Irecv, (const_cast
(values), n, get_mpi_datatype
(*values), source, tag, MPI_Comm(*this), &req.m_requests[0])); return req; } template
request communicator::array_irecv_impl(int source, int tag, T* values, int n, mpl::false_) const { typedef detail::serialized_array_irecv_data
data_t; shared_ptr
data(new data_t(*this, source, tag, values, n)); request req; req.m_data = data; req.m_handler = request::handle_serialized_array_irecv
; BOOST_MPI_CHECK_RESULT(MPI_Irecv, (&data->count, 1, get_mpi_datatype
(data->count), source, tag, MPI_Comm(*this), &req.m_requests[0])); return req; } // Array receive must receive the elements directly into a buffer. template
request communicator::irecv(int source, int tag, T* values, int n) const { return this->array_irecv_impl(source, tag, values, n, is_mpi_datatype
()); } /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL void communicator::send
(int dest, int tag, const packed_oarchive& ar) const; /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL void communicator::send
(int dest, int tag, const packed_skeleton_oarchive& ar) const; /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL void communicator::send
(int dest, int tag, const content& c) const; /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL status communicator::recv
(int source, int tag, packed_iarchive& ar) const; /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL status communicator::recv
(int source, int tag, packed_skeleton_iarchive& ar) const; /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL status communicator::recv
(int source, int tag, const content& c) const; /** * INTERNAL ONLY */ template<> inline status communicator::recv
(int source, int tag, content& c) const { return recv
(source,tag,c); } /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL request communicator::isend
(int dest, int tag, const packed_oarchive& ar) const; /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL request communicator::isend
(int dest, int tag, const packed_skeleton_oarchive& ar) const; /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL request communicator::isend
(int dest, int tag, const content& c) const; /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL request communicator::irecv
(int source, int tag, packed_skeleton_iarchive& ar) const; /** * INTERNAL ONLY */ template<> BOOST_MPI_DECL request communicator::irecv
(int source, int tag, const content& c) const; /** * INTERNAL ONLY */ template<> inline request communicator::irecv
(int source, int tag, content& c) const { return irecv
(source, tag, c); } } } // end namespace boost::mpi // If the user has already included skeleton_and_content.hpp, include // the code to send/receive skeletons and content. #ifdef BOOST_MPI_SKELETON_AND_CONTENT_HPP # include
#endif #ifdef BOOST_MSVC # pragma warning(pop) #endif #endif // BOOST_MPI_COMMUNICATOR_HPP
communicator.hpp
Page URL
File URL
Prev
4/22
Next
Download
( 58 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.