DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// boost quaternion.hpp header file // (C) Copyright Hubert Holin 2001. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_QUATERNION_HPP #define BOOST_QUATERNION_HPP #include
#include
// for the "<<" and ">>" operators #include
// for the "<<" operator #include
// for BOOST_NO_STD_LOCALE #include
#ifndef BOOST_NO_STD_LOCALE #include
// for the "<<" operator #endif /* BOOST_NO_STD_LOCALE */ #include
#include
// for the Sinus cardinal #include
// for the Hyperbolic Sinus cardinal namespace boost { namespace math { #if BOOST_WORKAROUND(__GNUC__, < 3) // gcc 2.95.x uses expression templates for valarray calculations, but // the result is not conforming. We need BOOST_GET_VALARRAY to get an // actual valarray result when we need to call a member function #define BOOST_GET_VALARRAY(T,x) ::std::valarray
(x) // gcc 2.95.x has an "std::ios" class that is similar to // "std::ios_base", so we just use a #define #define BOOST_IOS_BASE ::std::ios // gcc 2.x ignores function scope using declarations, // put them in the scope of the enclosing namespace instead: using ::std::valarray; using ::std::sqrt; using ::std::cos; using ::std::sin; using ::std::exp; using ::std::cosh; #endif /* BOOST_WORKAROUND(__GNUC__, < 3) */ #define BOOST_QUATERNION_ACCESSOR_GENERATOR(type) \ type real() const \ { \ return(a); \ } \ \ quaternion
unreal() const \ { \ return(quaternion
(static_cast
(0),b,c,d)); \ } \ \ type R_component_1() const \ { \ return(a); \ } \ \ type R_component_2() const \ { \ return(b); \ } \ \ type R_component_3() const \ { \ return(c); \ } \ \ type R_component_4() const \ { \ return(d); \ } \ \ ::std::complex
C_component_1() const \ { \ return(::std::complex
(a,b)); \ } \ \ ::std::complex
C_component_2() const \ { \ return(::std::complex
(c,d)); \ } #define BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(type) \ template
\ quaternion
& operator = (quaternion
const & a_affecter) \ { \ a = static_cast
(a_affecter.R_component_1()); \ b = static_cast
(a_affecter.R_component_2()); \ c = static_cast
(a_affecter.R_component_3()); \ d = static_cast
(a_affecter.R_component_4()); \ \ return(*this); \ } \ \ quaternion
& operator = (quaternion
const & a_affecter) \ { \ a = a_affecter.a; \ b = a_affecter.b; \ c = a_affecter.c; \ d = a_affecter.d; \ \ return(*this); \ } \ \ quaternion
& operator = (type const & a_affecter) \ { \ a = a_affecter; \ \ b = c = d = static_cast
(0); \ \ return(*this); \ } \ \ quaternion
& operator = (::std::complex
const & a_affecter) \ { \ a = a_affecter.real(); \ b = a_affecter.imag(); \ \ c = d = static_cast
(0); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_DATA_GENERATOR(type) \ type a; \ type b; \ type c; \ type d; template
class quaternion { public: typedef T value_type; // constructor for H seen as R^4 // (also default constructor) explicit quaternion( T const & requested_a = T(), T const & requested_b = T(), T const & requested_c = T(), T const & requested_d = T()) : a(requested_a), b(requested_b), c(requested_c), d(requested_d) { // nothing to do! } // constructor for H seen as C^2 explicit quaternion( ::std::complex
const & z0, ::std::complex
const & z1 = ::std::complex
()) : a(z0.real()), b(z0.imag()), c(z1.real()), d(z1.imag()) { // nothing to do! } // UNtemplated copy constructor // (this is taken care of by the compiler itself) // templated copy constructor template
explicit quaternion(quaternion
const & a_recopier) : a(static_cast
(a_recopier.R_component_1())), b(static_cast
(a_recopier.R_component_2())), c(static_cast
(a_recopier.R_component_3())), d(static_cast
(a_recopier.R_component_4())) { // nothing to do! } // destructor // (this is taken care of by the compiler itself) // accessors // // Note: Like complex number, quaternions do have a meaningful notion of "real part", // but unlike them there is no meaningful notion of "imaginary part". // Instead there is an "unreal part" which itself is a quaternion, and usually // nothing simpler (as opposed to the complex number case). // However, for practicallity, there are accessors for the other components // (these are necessary for the templated copy constructor, for instance). BOOST_QUATERNION_ACCESSOR_GENERATOR(T) // assignment operators BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(T) // other assignment-related operators // // NOTE: Quaternion multiplication is *NOT* commutative; // symbolically, "q *= rhs;" means "q = q * rhs;" // and "q /= rhs;" means "q = q * inverse_of(rhs);" quaternion
& operator += (T const & rhs) { T at = a + rhs; // exception guard a = at; return(*this); } quaternion
& operator += (::std::complex
const & rhs) { T at = a + rhs.real(); // exception guard T bt = b + rhs.imag(); // exception guard a = at; b = bt; return(*this); } template
quaternion
& operator += (quaternion
const & rhs) { T at = a + static_cast
(rhs.R_component_1()); // exception guard T bt = b + static_cast
(rhs.R_component_2()); // exception guard T ct = c + static_cast
(rhs.R_component_3()); // exception guard T dt = d + static_cast
(rhs.R_component_4()); // exception guard a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator -= (T const & rhs) { T at = a - rhs; // exception guard a = at; return(*this); } quaternion
& operator -= (::std::complex
const & rhs) { T at = a - rhs.real(); // exception guard T bt = b - rhs.imag(); // exception guard a = at; b = bt; return(*this); } template
quaternion
& operator -= (quaternion
const & rhs) { T at = a - static_cast
(rhs.R_component_1()); // exception guard T bt = b - static_cast
(rhs.R_component_2()); // exception guard T ct = c - static_cast
(rhs.R_component_3()); // exception guard T dt = d - static_cast
(rhs.R_component_4()); // exception guard a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator *= (T const & rhs) { T at = a * rhs; // exception guard T bt = b * rhs; // exception guard T ct = c * rhs; // exception guard T dt = d * rhs; // exception guard a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator *= (::std::complex
const & rhs) { T ar = rhs.real(); T br = rhs.imag(); T at = +a*ar-b*br; T bt = +a*br+b*ar; T ct = +c*ar+d*br; T dt = -c*br+d*ar; a = at; b = bt; c = ct; d = dt; return(*this); } template
quaternion
& operator *= (quaternion
const & rhs) { T ar = static_cast
(rhs.R_component_1()); T br = static_cast
(rhs.R_component_2()); T cr = static_cast
(rhs.R_component_3()); T dr = static_cast
(rhs.R_component_4()); T at = +a*ar-b*br-c*cr-d*dr; T bt = +a*br+b*ar+c*dr-d*cr; //(a*br+ar*b)+(c*dr-cr*d); T ct = +a*cr-b*dr+c*ar+d*br; //(a*cr+ar*c)+(d*br-dr*b); T dt = +a*dr+b*cr-c*br+d*ar; //(a*dr+ar*d)+(b*cr-br*c); a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator /= (T const & rhs) { T at = a / rhs; // exception guard T bt = b / rhs; // exception guard T ct = c / rhs; // exception guard T dt = d / rhs; // exception guard a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator /= (::std::complex
const & rhs) { T ar = rhs.real(); T br = rhs.imag(); T denominator = ar*ar+br*br; T at = (+a*ar+b*br)/denominator; //(a*ar+b*br)/denominator; T bt = (-a*br+b*ar)/denominator; //(ar*b-a*br)/denominator; T ct = (+c*ar-d*br)/denominator; //(ar*c-d*br)/denominator; T dt = (+c*br+d*ar)/denominator; //(ar*d+br*c)/denominator; a = at; b = bt; c = ct; d = dt; return(*this); } template
quaternion
& operator /= (quaternion
const & rhs) { T ar = static_cast
(rhs.R_component_1()); T br = static_cast
(rhs.R_component_2()); T cr = static_cast
(rhs.R_component_3()); T dr = static_cast
(rhs.R_component_4()); T denominator = ar*ar+br*br+cr*cr+dr*dr; T at = (+a*ar+b*br+c*cr+d*dr)/denominator; //(a*ar+b*br+c*cr+d*dr)/denominator; T bt = (-a*br+b*ar-c*dr+d*cr)/denominator; //((ar*b-a*br)+(cr*d-c*dr))/denominator; T ct = (-a*cr+b*dr+c*ar-d*br)/denominator; //((ar*c-a*cr)+(dr*b-d*br))/denominator; T dt = (-a*dr-b*cr+c*br+d*ar)/denominator; //((ar*d-a*dr)+(br*c-b*cr))/denominator; a = at; b = bt; c = ct; d = dt; return(*this); } protected: BOOST_QUATERNION_MEMBER_DATA_GENERATOR(T) private: }; // declaration of quaternion specialization template<> class quaternion
; template<> class quaternion
; template<> class quaternion
; // helper templates for converting copy constructors (declaration) namespace detail { template< typename T, typename U > quaternion
quaternion_type_converter(quaternion
const & rhs); } // implementation of quaternion specialization #define BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(type) \ explicit quaternion( type const & requested_a = static_cast
(0), \ type const & requested_b = static_cast
(0), \ type const & requested_c = static_cast
(0), \ type const & requested_d = static_cast
(0)) \ : a(requested_a), \ b(requested_b), \ c(requested_c), \ d(requested_d) \ { \ } \ \ explicit quaternion( ::std::complex
const & z0, \ ::std::complex
const & z1 = ::std::complex
()) \ : a(z0.real()), \ b(z0.imag()), \ c(z1.real()), \ d(z1.imag()) \ { \ } #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR_1(type) \ quaternion
& operator += (type const & rhs) \ { \ a += rhs; \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR_2(type) \ quaternion
& operator += (::std::complex
const & rhs) \ { \ a += rhs.real(); \ b += rhs.imag(); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR_3(type) \ template
\ quaternion
& operator += (quaternion
const & rhs) \ { \ a += static_cast
(rhs.R_component_1()); \ b += static_cast
(rhs.R_component_2()); \ c += static_cast
(rhs.R_component_3()); \ d += static_cast
(rhs.R_component_4()); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR_1(type) \ quaternion
& operator -= (type const & rhs) \ { \ a -= rhs; \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR_2(type) \ quaternion
& operator -= (::std::complex
const & rhs) \ { \ a -= rhs.real(); \ b -= rhs.imag(); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR_3(type) \ template
\ quaternion
& operator -= (quaternion
const & rhs) \ { \ a -= static_cast
(rhs.R_component_1()); \ b -= static_cast
(rhs.R_component_2()); \ c -= static_cast
(rhs.R_component_3()); \ d -= static_cast
(rhs.R_component_4()); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR_1(type) \ quaternion
& operator *= (type const & rhs) \ { \ a *= rhs; \ b *= rhs; \ c *= rhs; \ d *= rhs; \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR_2(type) \ quaternion
& operator *= (::std::complex
const & rhs) \ { \ type ar = rhs.real(); \ type br = rhs.imag(); \ \ type at = +a*ar-b*br; \ type bt = +a*br+b*ar; \ type ct = +c*ar+d*br; \ type dt = -c*br+d*ar; \ \ a = at; \ b = bt; \ c = ct; \ d = dt; \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR_3(type) \ template
\ quaternion
& operator *= (quaternion
const & rhs) \ { \ type ar = static_cast
(rhs.R_component_1()); \ type br = static_cast
(rhs.R_component_2()); \ type cr = static_cast
(rhs.R_component_3()); \ type dr = static_cast
(rhs.R_component_4()); \ \ type at = +a*ar-b*br-c*cr-d*dr; \ type bt = +a*br+b*ar+c*dr-d*cr; \ type ct = +a*cr-b*dr+c*ar+d*br; \ type dt = +a*dr+b*cr-c*br+d*ar; \ \ a = at; \ b = bt; \ c = ct; \ d = dt; \ \ return(*this); \ } // There is quite a lot of repetition in the code below. This is intentional. // The last conditional block is the normal form, and the others merely // consist of workarounds for various compiler deficiencies. Hopefuly, when // more compilers are conformant and we can retire support for those that are // not, we will be able to remove the clutter. This is makes the situation // (painfully) explicit. #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_1(type) \ quaternion
& operator /= (type const & rhs) \ { \ a /= rhs; \ b /= rhs; \ c /= rhs; \ d /= rhs; \ \ return(*this); \ } #if defined(__GNUC__) && (__GNUC__ < 3) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \ quaternion
& operator /= (::std::complex
const & rhs) \ { \ using ::std::valarray; \ \ valarray
tr(2); \ \ tr[0] = rhs.real(); \ tr[1] = rhs.imag(); \ \ type mixam = (BOOST_GET_VALARRAY(type,static_cast
(1)/abs(tr)).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]; \ tt[1] = -a*tr[1]+b*tr[0]; \ tt[2] = +c*tr[0]-d*tr[1]; \ tt[3] = +c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #elif defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \ quaternion
& operator /= (::std::complex
const & rhs) \ { \ using ::std::valarray; \ using ::std::abs; \ \ valarray
tr(2); \ \ tr[0] = rhs.real(); \ tr[1] = rhs.imag(); \ \ type mixam = static_cast
(1)/(abs(tr).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]; \ tt[1] = -a*tr[1]+b*tr[0]; \ tt[2] = +c*tr[0]-d*tr[1]; \ tt[3] = +c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #else #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \ quaternion
& operator /= (::std::complex
const & rhs) \ { \ using ::std::valarray; \ \ valarray
tr(2); \ \ tr[0] = rhs.real(); \ tr[1] = rhs.imag(); \ \ type mixam = static_cast
(1)/(abs(tr).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]; \ tt[1] = -a*tr[1]+b*tr[0]; \ tt[2] = +c*tr[0]-d*tr[1]; \ tt[3] = +c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #endif /* defined(__GNUC__) && (__GNUC__ < 3) */ /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */ #if defined(__GNUC__) && (__GNUC__ < 3) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) \ template
\ quaternion
& operator /= (quaternion
const & rhs) \ { \ using ::std::valarray; \ \ valarray
tr(4); \ \ tr[0] = static_cast
(rhs.R_component_1()); \ tr[1] = static_cast
(rhs.R_component_2()); \ tr[2] = static_cast
(rhs.R_component_3()); \ tr[3] = static_cast
(rhs.R_component_4()); \ \ type mixam = (BOOST_GET_VALARRAY(type,static_cast
(1)/abs(tr)).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]+c*tr[2]+d*tr[3]; \ tt[1] = -a*tr[1]+b*tr[0]-c*tr[3]+d*tr[2]; \ tt[2] = -a*tr[2]+b*tr[3]+c*tr[0]-d*tr[1]; \ tt[3] = -a*tr[3]-b*tr[2]+c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #elif defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) \ template
\ quaternion
& operator /= (quaternion
const & rhs) \ { \ using ::std::valarray; \ using ::std::abs; \ \ valarray
tr(4); \ \ tr[0] = static_cast
(rhs.R_component_1()); \ tr[1] = static_cast
(rhs.R_component_2()); \ tr[2] = static_cast
(rhs.R_component_3()); \ tr[3] = static_cast
(rhs.R_component_4()); \ \ type mixam = static_cast
(1)/(abs(tr).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]+c*tr[2]+d*tr[3]; \ tt[1] = -a*tr[1]+b*tr[0]-c*tr[3]+d*tr[2]; \ tt[2] = -a*tr[2]+b*tr[3]+c*tr[0]-d*tr[1]; \ tt[3] = -a*tr[3]-b*tr[2]+c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #else #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) \ template
\ quaternion
& operator /= (quaternion
const & rhs) \ { \ using ::std::valarray; \ \ valarray
tr(4); \ \ tr[0] = static_cast
(rhs.R_component_1()); \ tr[1] = static_cast
(rhs.R_component_2()); \ tr[2] = static_cast
(rhs.R_component_3()); \ tr[3] = static_cast
(rhs.R_component_4()); \ \ type mixam = static_cast
(1)/(abs(tr).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]+c*tr[2]+d*tr[3]; \ tt[1] = -a*tr[1]+b*tr[0]-c*tr[3]+d*tr[2]; \ tt[2] = -a*tr[2]+b*tr[3]+c*tr[0]-d*tr[1]; \ tt[3] = -a*tr[3]-b*tr[2]+c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #endif /* defined(__GNUC__) && (__GNUC__ < 3) */ /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */ #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_ADD_GENERATOR_1(type) \ BOOST_QUATERNION_MEMBER_ADD_GENERATOR_2(type) \ BOOST_QUATERNION_MEMBER_ADD_GENERATOR_3(type) #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_SUB_GENERATOR_1(type) \ BOOST_QUATERNION_MEMBER_SUB_GENERATOR_2(type) \ BOOST_QUATERNION_MEMBER_SUB_GENERATOR_3(type) #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_MUL_GENERATOR_1(type) \ BOOST_QUATERNION_MEMBER_MUL_GENERATOR_2(type) \ BOOST_QUATERNION_MEMBER_MUL_GENERATOR_3(type) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_DIV_GENERATOR_1(type) \ BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \ BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) #define BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_ADD_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_SUB_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_MUL_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_DIV_GENERATOR(type) template<> class quaternion
{ public: typedef float value_type; BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(float) // UNtemplated copy constructor // (this is taken care of by the compiler itself) // explicit copy constructors (precision-loosing converters) explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } // destructor // (this is taken care of by the compiler itself) // accessors // // Note: Like complex number, quaternions do have a meaningful notion of "real part", // but unlike them there is no meaningful notion of "imaginary part". // Instead there is an "unreal part" which itself is a quaternion, and usually // nothing simpler (as opposed to the complex number case). // However, for practicallity, there are accessors for the other components // (these are necessary for the templated copy constructor, for instance). BOOST_QUATERNION_ACCESSOR_GENERATOR(float) // assignment operators BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(float) // other assignment-related operators // // NOTE: Quaternion multiplication is *NOT* commutative; // symbolically, "q *= rhs;" means "q = q * rhs;" // and "q /= rhs;" means "q = q * inverse_of(rhs);" BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(float) protected: BOOST_QUATERNION_MEMBER_DATA_GENERATOR(float) private: }; template<> class quaternion
{ public: typedef double value_type; BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(double) // UNtemplated copy constructor // (this is taken care of by the compiler itself) // converting copy constructor explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } // explicit copy constructors (precision-loosing converters) explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } // destructor // (this is taken care of by the compiler itself) // accessors // // Note: Like complex number, quaternions do have a meaningful notion of "real part", // but unlike them there is no meaningful notion of "imaginary part". // Instead there is an "unreal part" which itself is a quaternion, and usually // nothing simpler (as opposed to the complex number case). // However, for practicallity, there are accessors for the other components // (these are necessary for the templated copy constructor, for instance). BOOST_QUATERNION_ACCESSOR_GENERATOR(double) // assignment operators BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(double) // other assignment-related operators // // NOTE: Quaternion multiplication is *NOT* commutative; // symbolically, "q *= rhs;" means "q = q * rhs;" // and "q /= rhs;" means "q = q * inverse_of(rhs);" BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(double) protected: BOOST_QUATERNION_MEMBER_DATA_GENERATOR(double) private: }; template<> class quaternion
{ public: typedef long double value_type; BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(long double) // UNtemplated copy constructor // (this is taken care of by the compiler itself) // converting copy constructors explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } // destructor // (this is taken care of by the compiler itself) // accessors // // Note: Like complex number, quaternions do have a meaningful notion of "real part", // but unlike them there is no meaningful notion of "imaginary part". // Instead there is an "unreal part" which itself is a quaternion, and usually // nothing simpler (as opposed to the complex number case). // However, for practicallity, there are accessors for the other components // (these are necessary for the templated copy constructor, for instance). BOOST_QUATERNION_ACCESSOR_GENERATOR(long double) // assignment operators BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(long double) // other assignment-related operators // // NOTE: Quaternion multiplication is *NOT* commutative; // symbolically, "q *= rhs;" means "q = q * rhs;" // and "q /= rhs;" means "q = q * inverse_of(rhs);" BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(long double) protected: BOOST_QUATERNION_MEMBER_DATA_GENERATOR(long double) private: }; #undef BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR_1 #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR_2 #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR_3 #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR_1 #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR_2 #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR_3 #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR_1 #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR_2 #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR_3 #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR_1 #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2 #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3 #undef BOOST_QUATERNION_CONSTRUCTOR_GENERATOR #undef BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR #undef BOOST_QUATERNION_MEMBER_DATA_GENERATOR #undef BOOST_QUATERNION_ACCESSOR_GENERATOR // operators #define BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) \ { \ quaternion
res(lhs); \ res op##= rhs; \ return(res); \ } #define BOOST_QUATERNION_OPERATOR_GENERATOR_1_L(op) \ template
\ inline quaternion
operator op (T const & lhs, quaternion
const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR_1_R(op) \ template
\ inline quaternion
operator op (quaternion
const & lhs, T const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR_2_L(op) \ template
\ inline quaternion
operator op (::std::complex
const & lhs, quaternion
const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR_2_R(op) \ template
\ inline quaternion
operator op (quaternion
const & lhs, ::std::complex
const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR_3(op) \ template
\ inline quaternion
operator op (quaternion
const & lhs, quaternion
const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_1_L(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_1_R(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_2_L(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_2_R(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_3(op) BOOST_QUATERNION_OPERATOR_GENERATOR(+) BOOST_QUATERNION_OPERATOR_GENERATOR(-) BOOST_QUATERNION_OPERATOR_GENERATOR(*) BOOST_QUATERNION_OPERATOR_GENERATOR(/) #undef BOOST_QUATERNION_OPERATOR_GENERATOR #undef BOOST_QUATERNION_OPERATOR_GENERATOR_1_L #undef BOOST_QUATERNION_OPERATOR_GENERATOR_1_R #undef BOOST_QUATERNION_OPERATOR_GENERATOR_2_L #undef BOOST_QUATERNION_OPERATOR_GENERATOR_2_R #undef BOOST_QUATERNION_OPERATOR_GENERATOR_3 #undef BOOST_QUATERNION_OPERATOR_GENERATOR_BODY template
inline quaternion
operator + (quaternion
const & q) { return(q); } template
inline quaternion
operator - (quaternion
const & q) { return(quaternion
(-q.R_component_1(),-q.R_component_2(),-q.R_component_3(),-q.R_component_4())); } template
inline bool operator == (T const & lhs, quaternion
const & rhs) { return ( (rhs.R_component_1() == lhs)&& (rhs.R_component_2() == static_cast
(0))&& (rhs.R_component_3() == static_cast
(0))&& (rhs.R_component_4() == static_cast
(0)) ); } template
inline bool operator == (quaternion
const & lhs, T const & rhs) { return ( (lhs.R_component_1() == rhs)&& (lhs.R_component_2() == static_cast
(0))&& (lhs.R_component_3() == static_cast
(0))&& (lhs.R_component_4() == static_cast
(0)) ); } template
inline bool operator == (::std::complex
const & lhs, quaternion
const & rhs) { return ( (rhs.R_component_1() == lhs.real())&& (rhs.R_component_2() == lhs.imag())&& (rhs.R_component_3() == static_cast
(0))&& (rhs.R_component_4() == static_cast
(0)) ); } template
inline bool operator == (quaternion
const & lhs, ::std::complex
const & rhs) { return ( (lhs.R_component_1() == rhs.real())&& (lhs.R_component_2() == rhs.imag())&& (lhs.R_component_3() == static_cast
(0))&& (lhs.R_component_4() == static_cast
(0)) ); } template
inline bool operator == (quaternion
const & lhs, quaternion
const & rhs) { return ( (rhs.R_component_1() == lhs.R_component_1())&& (rhs.R_component_2() == lhs.R_component_2())&& (rhs.R_component_3() == lhs.R_component_3())&& (rhs.R_component_4() == lhs.R_component_4()) ); } #define BOOST_QUATERNION_NOT_EQUAL_GENERATOR \ { \ return(!(lhs == rhs)); \ } template
inline bool operator != (T const & lhs, quaternion
const & rhs) BOOST_QUATERNION_NOT_EQUAL_GENERATOR template
inline bool operator != (quaternion
const & lhs, T const & rhs) BOOST_QUATERNION_NOT_EQUAL_GENERATOR template
inline bool operator != (::std::complex
const & lhs, quaternion
const & rhs) BOOST_QUATERNION_NOT_EQUAL_GENERATOR template
inline bool operator != (quaternion
const & lhs, ::std::complex
const & rhs) BOOST_QUATERNION_NOT_EQUAL_GENERATOR template
inline bool operator != (quaternion
const & lhs, quaternion