DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
True Drop Box
FTP/SFTP Hosting
Group Account
Team Anywhere
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Cloud-to-Cloud Backup
|
DVR/Camera Backup
FTP, Email & Web Service
FTP/SFTP Hosting
|
Email Hosting
|
Web Hosting
|
Webcam Hosting
Cloud Surveillance & Remote Desktop
Team Anywhere
|
Connect to Remote PC
|
Cloud Surveillance
|
Virtual CCTV NVR
Quick Links
Security and Privacy
Customer Support
Service Manual
Use Cases
Group Account
Online Help
Support Forum
Contact Us
About DriveHQ
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
Cloud Surveillance & Remote Desktop
Team Anywhere (Remote Desktop Service)
CameraFTP Cloud Surveillance
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Team Anywhere for Windows (Beta)
DriveHQ Mobile Apps
CameraFTP Software & Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
CameraFTP Cloud Recording Service Plans
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// Copyright David Abrahams and Thomas Becker 2000-2006. Distributed // under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_ # define BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_ #include <stddef.h> #include <boost/iterator.hpp> #include <boost/iterator/iterator_traits.hpp> #include <boost/iterator/iterator_facade.hpp> #include <boost/iterator/iterator_adaptor.hpp> // for enable_if_convertible #include <boost/iterator/iterator_categories.hpp> #include <boost/detail/iterator.hpp> #include <boost/iterator/detail/minimum_category.hpp> #include <boost/tuple/tuple.hpp> #include <boost/type_traits/is_same.hpp> #include <boost/mpl/and.hpp> #include <boost/mpl/apply.hpp> #include <boost/mpl/eval_if.hpp> #include <boost/mpl/lambda.hpp> #include <boost/mpl/placeholders.hpp> #include <boost/mpl/aux_/lambda_support.hpp> namespace boost { // Zip iterator forward declaration for zip_iterator_base template<typename IteratorTuple> class zip_iterator; // One important design goal of the zip_iterator is to isolate all // functionality whose implementation relies on the current tuple // implementation. This goal has been achieved as follows: Inside // the namespace detail there is a namespace tuple_impl_specific. // This namespace encapsulates all functionality that is specific // to the current Boost tuple implementation. More precisely, the // namespace tuple_impl_specific provides the following tuple // algorithms and meta-algorithms for the current Boost tuple // implementation: // // tuple_meta_transform // tuple_meta_accumulate // tuple_transform // tuple_for_each // // If the tuple implementation changes, all that needs to be // replaced is the implementation of these four (meta-)algorithms. namespace detail { // Functors to be used with tuple algorithms // template<typename DiffType> class advance_iterator { public: advance_iterator(DiffType step) : m_step(step) {} template<typename Iterator> void operator()(Iterator& it) const { it += m_step; } private: DiffType m_step; }; // struct increment_iterator { template<typename Iterator> void operator()(Iterator& it) { ++it; } }; // struct decrement_iterator { template<typename Iterator> void operator()(Iterator& it) { --it; } }; // struct dereference_iterator { template<typename Iterator> struct apply { typedef typename iterator_traits<Iterator>::reference type; }; template<typename Iterator> typename apply<Iterator>::type operator()(Iterator const& it) { return *it; } }; // The namespace tuple_impl_specific provides two meta- // algorithms and two algorithms for tuples. // namespace tuple_impl_specific { // Meta-transform algorithm for tuples // template<typename Tuple, class UnaryMetaFun> struct tuple_meta_transform; template<typename Tuple, class UnaryMetaFun> struct tuple_meta_transform_impl { typedef tuples::cons< typename mpl::apply1< typename mpl::lambda<UnaryMetaFun>::type , typename Tuple::head_type >::type , typename tuple_meta_transform< typename Tuple::tail_type , UnaryMetaFun >::type > type; }; template<typename Tuple, class UnaryMetaFun> struct tuple_meta_transform : mpl::eval_if< boost::is_same<Tuple, tuples::null_type> , mpl::identity<tuples::null_type> , tuple_meta_transform_impl<Tuple, UnaryMetaFun> > { }; // Meta-accumulate algorithm for tuples. Note: The template // parameter StartType corresponds to the initial value in // ordinary accumulation. // template<class Tuple, class BinaryMetaFun, class StartType> struct tuple_meta_accumulate; template< typename Tuple , class BinaryMetaFun , typename StartType > struct tuple_meta_accumulate_impl { typedef typename mpl::apply2< typename mpl::lambda<BinaryMetaFun>::type , typename Tuple::head_type , typename tuple_meta_accumulate< typename Tuple::tail_type , BinaryMetaFun , StartType >::type >::type type; }; template< typename Tuple , class BinaryMetaFun , typename StartType > struct tuple_meta_accumulate : mpl::eval_if< #if BOOST_WORKAROUND(BOOST_MSVC, < 1300) mpl::or_< #endif boost::is_same<Tuple, tuples::null_type> #if BOOST_WORKAROUND(BOOST_MSVC, < 1300) , boost::is_same<Tuple,int> > #endif , mpl::identity<StartType> , tuple_meta_accumulate_impl< Tuple , BinaryMetaFun , StartType > > { }; #if defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) \ || ( \ BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION, != 0) && defined(_MSC_VER) \ ) // Not sure why intel's partial ordering fails in this case, but I'm // assuming int's an MSVC bug-compatibility feature. # define BOOST_TUPLE_ALGO_DISPATCH # define BOOST_TUPLE_ALGO(algo) algo##_impl # define BOOST_TUPLE_ALGO_TERMINATOR , int # define BOOST_TUPLE_ALGO_RECURSE , ... #else # define BOOST_TUPLE_ALGO(algo) algo # define BOOST_TUPLE_ALGO_TERMINATOR # define BOOST_TUPLE_ALGO_RECURSE #endif // transform algorithm for tuples. The template parameter Fun // must be a unary functor which is also a unary metafunction // class that computes its return type based on its argument // type. For example: // // struct to_ptr // { // template <class Arg> // struct apply // { // typedef Arg* type; // } // // template <class Arg> // Arg* operator()(Arg x); // }; template<typename Fun> tuples::null_type BOOST_TUPLE_ALGO(tuple_transform) (tuples::null_type const&, Fun BOOST_TUPLE_ALGO_TERMINATOR) { return tuples::null_type(); } template<typename Tuple, typename Fun> typename tuple_meta_transform< Tuple , Fun >::type BOOST_TUPLE_ALGO(tuple_transform)( const Tuple& t, Fun f BOOST_TUPLE_ALGO_RECURSE ) { typedef typename tuple_meta_transform< BOOST_DEDUCED_TYPENAME Tuple::tail_type , Fun >::type transformed_tail_type; return tuples::cons< BOOST_DEDUCED_TYPENAME mpl::apply1< Fun, BOOST_DEDUCED_TYPENAME Tuple::head_type >::type , transformed_tail_type >( f(boost::tuples::get<0>(t)), tuple_transform(t.get_tail(), f) ); } #ifdef BOOST_TUPLE_ALGO_DISPATCH template<typename Tuple, typename Fun> typename tuple_meta_transform< Tuple , Fun >::type tuple_transform( const Tuple& t, Fun f ) { return tuple_transform_impl(t, f, 1); } #endif // for_each algorithm for tuples. // template<typename Fun> Fun BOOST_TUPLE_ALGO(tuple_for_each)( tuples::null_type , Fun f BOOST_TUPLE_ALGO_TERMINATOR ) { return f; } template<typename Tuple, typename Fun> Fun BOOST_TUPLE_ALGO(tuple_for_each)( Tuple& t , Fun f BOOST_TUPLE_ALGO_RECURSE) { f( t.get_head() ); return tuple_for_each(t.get_tail(), f); } #ifdef BOOST_TUPLE_ALGO_DISPATCH template<typename Tuple, typename Fun> Fun tuple_for_each( Tuple& t, Fun f ) { return tuple_for_each_impl(t, f, 1); } #endif // Equality of tuples. NOTE: "==" for tuples currently (7/2003) // has problems under some compilers, so I just do my own. // No point in bringing in a bunch of #ifdefs here. This is // going to go away with the next tuple implementation anyway. // inline bool tuple_equal(tuples::null_type, tuples::null_type) { return true; } template<typename Tuple1, typename Tuple2> bool tuple_equal( Tuple1 const& t1, Tuple2 const& t2 ) { return t1.get_head() == t2.get_head() && tuple_equal(t1.get_tail(), t2.get_tail()); } } // // end namespace tuple_impl_specific template<typename Iterator> struct iterator_reference { typedef typename iterator_traits<Iterator>::reference type; }; #ifdef BOOST_MPL_CFG_NO_FULL_LAMBDA_SUPPORT // Hack because BOOST_MPL_AUX_LAMBDA_SUPPORT doesn't seem to work // out well. Instantiating the nested apply template also // requires instantiating iterator_traits on the // placeholder. Instead we just specialize it as a metafunction // class. template<> struct iterator_reference<mpl::_1> { template <class T> struct apply : iterator_reference<T> {}; }; #endif // Metafunction to obtain the type of the tuple whose element types // are the reference types of an iterator tuple. // template<typename IteratorTuple> struct tuple_of_references : tuple_impl_specific::tuple_meta_transform< IteratorTuple, iterator_reference<mpl::_1> > { }; // Metafunction to obtain the minimal traversal tag in a tuple // of iterators. // template<typename IteratorTuple> struct minimum_traversal_category_in_iterator_tuple { typedef typename tuple_impl_specific::tuple_meta_transform< IteratorTuple , iterator_traversal<> >::type tuple_of_traversal_tags; typedef typename tuple_impl_specific::tuple_meta_accumulate< tuple_of_traversal_tags , minimum_category<> , random_access_traversal_tag >::type type; }; #if BOOST_WORKAROUND(BOOST_MSVC, < 1300) // ETI workaround template <> struct minimum_traversal_category_in_iterator_tuple<int> { typedef int type; }; #endif // We need to call tuple_meta_accumulate with mpl::and_ as the // accumulating functor. To this end, we need to wrap it into // a struct that has exactly two arguments (that is, template // parameters) and not five, like mpl::and_ does. // template<typename Arg1, typename Arg2> struct and_with_two_args : mpl::and_<Arg1, Arg2> { }; # ifdef BOOST_MPL_CFG_NO_FULL_LAMBDA_SUPPORT // Hack because BOOST_MPL_AUX_LAMBDA_SUPPORT doesn't seem to work // out well. In this case I think it's an MPL bug template<> struct and_with_two_args<mpl::_1,mpl::_2> { template <class A1, class A2> struct apply : mpl::and_<A1,A2> {}; }; # endif /////////////////////////////////////////////////////////////////// // // Class zip_iterator_base // // Builds and exposes the iterator facade type from which the zip // iterator will be derived. // template<typename IteratorTuple> struct zip_iterator_base { private: // Reference type is the type of the tuple obtained from the // iterators' reference types. typedef typename detail::tuple_of_references<IteratorTuple>::type reference; // Value type is the same as reference type. typedef reference value_type; // Difference type is the first iterator's difference type typedef typename iterator_traits< typename tuples::element<0, IteratorTuple>::type >::difference_type difference_type; // Traversal catetgory is the minimum traversal category in the // iterator tuple. typedef typename detail::minimum_traversal_category_in_iterator_tuple< IteratorTuple >::type traversal_category; public: // The iterator facade type from which the zip iterator will // be derived. typedef iterator_facade< zip_iterator<IteratorTuple>, value_type, traversal_category, reference, difference_type > type; }; template <> struct zip_iterator_base<int> { typedef int type; }; } ///////////////////////////////////////////////////////////////////// // // zip_iterator class definition // template<typename IteratorTuple> class zip_iterator : public detail::zip_iterator_base<IteratorTuple>::type { // Typedef super_t as our base class. typedef typename detail::zip_iterator_base<IteratorTuple>::type super_t; // iterator_core_access is the iterator's best friend. friend class iterator_core_access; public: // Construction // ============ // Default constructor zip_iterator() { } // Constructor from iterator tuple zip_iterator(IteratorTuple iterator_tuple) : m_iterator_tuple(iterator_tuple) { } // Copy constructor template<typename OtherIteratorTuple> zip_iterator( const zip_iterator<OtherIteratorTuple>& other, typename enable_if_convertible< OtherIteratorTuple, IteratorTuple >::type* = 0 ) : m_iterator_tuple(other.get_iterator_tuple()) {} // Get method for the iterator tuple. const IteratorTuple& get_iterator_tuple() const { return m_iterator_tuple; } private: // Implementation of Iterator Operations // ===================================== // Dereferencing returns a tuple built from the dereferenced // iterators in the iterator tuple. typename super_t::reference dereference() const { return detail::tuple_impl_specific::tuple_transform( get_iterator_tuple(), detail::dereference_iterator() ); } // Two zip iterators are equal if all iterators in the iterator // tuple are equal. NOTE: It should be possible to implement this // as // // return get_iterator_tuple() == other.get_iterator_tuple(); // // but equality of tuples currently (7/2003) does not compile // under several compilers. No point in bringing in a bunch // of #ifdefs here. // template<typename OtherIteratorTuple> bool equal(const zip_iterator<OtherIteratorTuple>& other) const { return detail::tuple_impl_specific::tuple_equal( get_iterator_tuple(), other.get_iterator_tuple() ); } // Advancing a zip iterator means to advance all iterators in the // iterator tuple. void advance(typename super_t::difference_type n) { detail::tuple_impl_specific::tuple_for_each( m_iterator_tuple, detail::advance_iterator<BOOST_DEDUCED_TYPENAME super_t::difference_type>(n) ); } // Incrementing a zip iterator means to increment all iterators in // the iterator tuple. void increment() { detail::tuple_impl_specific::tuple_for_each( m_iterator_tuple, detail::increment_iterator() ); } // Decrementing a zip iterator means to decrement all iterators in // the iterator tuple. void decrement() { detail::tuple_impl_specific::tuple_for_each( m_iterator_tuple, detail::decrement_iterator() ); } // Distance is calculated using the first iterator in the tuple. template<typename OtherIteratorTuple> typename super_t::difference_type distance_to( const zip_iterator<OtherIteratorTuple>& other ) const { return boost::tuples::get<0>(other.get_iterator_tuple()) - boost::tuples::get<0>(this->get_iterator_tuple()); } // Data Members // ============ // The iterator tuple. IteratorTuple m_iterator_tuple; }; // Make function for zip iterator // template<typename IteratorTuple> zip_iterator<IteratorTuple> make_zip_iterator(IteratorTuple t) { return zip_iterator<IteratorTuple>(t); } } #endif
zip_iterator.hpp
Page URL
File URL
Prev
17/17 Next
Download
( 17 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.