DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2007 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_SG_SET_HPP #define BOOST_INTRUSIVE_SG_SET_HPP #include
#include
#include
#include
namespace boost { namespace intrusive { //! The class template sg_set is an intrusive container, that mimics most of //! the interface of std::set as described in the C++ standard. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<> and //! \c compare<>. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif class sg_set_impl { /// @cond typedef sgtree_impl
tree_type; //! This class is //! non-copyable sg_set_impl (const sg_set_impl&); //! This class is //! non-assignable sg_set_impl &operator =(const sg_set_impl&); typedef tree_type implementation_defined; /// @endcond public: typedef typename implementation_defined::value_type value_type; typedef typename implementation_defined::value_traits value_traits; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::key_compare key_compare; typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::reverse_iterator reverse_iterator; typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator; typedef typename implementation_defined::insert_commit_data insert_commit_data; typedef typename implementation_defined::node_traits node_traits; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_ptr node_ptr; typedef typename implementation_defined::const_node_ptr const_node_ptr; typedef typename implementation_defined::node_algorithms node_algorithms; /// @cond private: tree_type tree_; /// @endcond public: //!
Effects
: Constructs an empty sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor of the value_compare object throws. sg_set_impl( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(cmp, v_traits) {} //!
Requires
: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //!
Effects
: Constructs an empty sg_set and inserts elements from //! [b, e). //! //!
Complexity
: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is std::distance(last, first). //! //!
Throws
: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. template
sg_set_impl( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(true, b, e, cmp, v_traits) {} //!
Effects
: Detaches all elements from this. The objects in the sg_set //! are not deleted (i.e. no destructors are called). //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. ~sg_set_impl() {} //!
Effects
: Returns an iterator pointing to the beginning of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator begin() { return tree_.begin(); } //!
Effects
: Returns a const_iterator pointing to the beginning of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator begin() const { return tree_.begin(); } //!
Effects
: Returns a const_iterator pointing to the beginning of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cbegin() const { return tree_.cbegin(); } //!
Effects
: Returns an iterator pointing to the end of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator end() { return tree_.end(); } //!
Effects
: Returns a const_iterator pointing to the end of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator end() const { return tree_.end(); } //!
Effects
: Returns a const_iterator pointing to the end of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cend() const { return tree_.cend(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning of the //! reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rbegin() { return tree_.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rbegin() const { return tree_.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crbegin() const { return tree_.crbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rend() { return tree_.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rend() const { return tree_.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crend() const { return tree_.crend(); } //!
Precondition
: end_iterator must be a valid end iterator //! of sg_set. //! //!
Effects
: Returns a const reference to the sg_set associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static sg_set_impl &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member
( &tree_type::container_from_end_iterator(end_iterator) , &sg_set_impl::tree_); } //!
Precondition
: end_iterator must be a valid end const_iterator //! of sg_set. //! //!
Effects
: Returns a const reference to the sg_set associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static const sg_set_impl &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member
( &tree_type::container_from_end_iterator(end_iterator) , &sg_set_impl::tree_); } //!
Effects
: Returns the key_compare object used by the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: If key_compare copy-constructor throws. key_compare key_comp() const { return tree_.value_comp(); } //!
Effects
: Returns the value_compare object used by the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: If value_compare copy-constructor throws. value_compare value_comp() const { return tree_.value_comp(); } //!
Effects
: Returns true is the container is empty. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. bool empty() const { return tree_.empty(); } //!
Effects
: Returns the number of elements stored in the sg_set. //! //!
Complexity
: Linear to elements contained in *this if, //! constant-time size option is enabled. Constant-time otherwise. //! //!
Throws
: Nothing. size_type size() const { return tree_.size(); } //!
Effects
: Swaps the contents of two sets. //! //!
Complexity
: Constant. //! //!
Throws
: If the swap() call for the comparison functor //! found using ADL throws. Strong guarantee. void swap(sg_set_impl& other) { tree_.swap(other.tree_); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //!
Complexity
: Linear to erased plus inserted elements. //! //!
Throws
: If cloner throws. template
void clone_from(const sg_set_impl &src, Cloner cloner, Disposer disposer) { tree_.clone_from(src.tree_, cloner, disposer); } //!
Requires
: value must be an lvalue //! //!
Effects
: Tries to inserts value into the sg_set. //! //!
Returns
: If the value //! is not already present inserts it and returns a pair containing the //! iterator to the new value and true. If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. //! //!
Complexity
: Average complexity for insert element is at //! most logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. Strong guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair
insert(reference value) { return tree_.insert_unique(value); } //!
Requires
: value must be an lvalue //! //!
Effects
: Tries to to insert x into the sg_set, using "hint" //! as a hint to where it will be inserted. //! //!
Returns
: An iterator that points to the position where the //! new element was inserted into the sg_set. //! //!
Complexity
: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //!
Throws
: If the internal value_compare ordering function throws. Strong guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(const_iterator hint, reference value) { return tree_.insert_unique(hint, value); } //!
Requires
: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. The difference is that //! key_value_comp compares an ascapegoatitrary key with the contained values. //! //!
Effects
: Checks if a value can be inserted in the sg_set, using //! a user provided key instead of the value itself. //! //!
Returns
: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //!
Complexity
: Average complexity is at most logarithmic. //! //!
Throws
: If the key_value_comp ordering function throws. Strong guarantee. //! //!
Notes
: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that //! part to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the sg_set. template
std::pair
insert_check (const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data) { return tree_.insert_unique_check(key, key_value_comp, commit_data); } //!
Requires
: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. The difference is that //! key_value_comp compares an ascapegoatitrary key with the contained values. //! //!
Effects
: Checks if a value can be inserted in the sg_set, using //! a user provided key instead of the value itself, using "hint" //! as a hint to where it will be inserted. //! //!
Returns
: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //!
Complexity
: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //!
Throws
: If the key_value_comp ordering function throws. Strong guarantee. //! //!
Notes
: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! constructing that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that key //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This can give a total //! constant-time complexity to the insertion: check(O(1)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the sg_set. template
std::pair
insert_check (const_iterator hint, const KeyType &key ,KeyValueCompare key_value_comp, insert_commit_data &commit_data) { return tree_.insert_unique_check(hint, key, key_value_comp, commit_data); } //!
Requires
: value must be an lvalue of type value_type. commit_data //! must have been obtained from a previous call to "insert_check". //! No objects should have been inserted or erased from the sg_set between //! the "insert_check" that filled "commit_data" and the call to "insert_commit". //! //!
Effects
: Inserts the value in the sg_set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //!
Returns
: An iterator to the newly inserted object. //! //!
Complexity
: Constant time. //! //!
Throws
: Nothing. //! //!
Notes
: This function has only sense if a "insert_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. iterator insert_commit(reference value, const insert_commit_data &commit_data) { return tree_.insert_unique_commit(value, commit_data); } //!
Requires
: Dereferencing iterator must yield an lvalue //! of type value_type. //! //!
Effects
: Inserts a range into the sg_set. //! //!
Complexity
: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. template
void insert(Iterator b, Iterator e) { tree_.insert_unique(b, e); } //!
Effects
: Erases the element pointed to by pos. //! //!
Complexity
: Average complexity is constant time. //! //!
Returns
: An iterator to the element after the erased element. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator i) { return tree_.erase(i); } //!
Effects
: Erases the range pointed to by b end e. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Returns
: An iterator to the element after the erased elements. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator b, iterator e) { return tree_.erase(b, e); } //!
Effects
: Erases all the elements with the given value. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size()) + this->count(value)). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return tree_.erase(value); } //!
Effects
: Erases all the elements that compare equal with //! the given key and the given comparison functor. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(key, comp)). //! //!
Throws
: If the comp ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase(const KeyType& key, KeyValueCompare comp) { return tree_.erase(key, comp); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //!
Complexity
: Average complexity for erase element is constant time. //! //!
Returns
: An iterator to the element after the erased element. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator i, Disposer disposer) { return tree_.erase_and_dispose(i, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Returns
: An iterator to the element after the erased elements. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator b, iterator e, Disposer disposer) { return tree_.erase_and_dispose(b, e, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Throws
: If the internal value_compare ordering function throws. //! //!
Complexity
: O(log(size() + this->count(value)). Basic guarantee. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase_and_dispose(const_reference value, Disposer disposer) { return tree_.erase_and_dispose(value, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(key, comp)). //! //!
Throws
: If comp ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer) { return tree_.erase_and_dispose(key, comp, disposer); } //!
Effects
: Erases all the elements of the container. //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { return tree_.clear(); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements of the container. //! //!
Complexity
: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
void clear_and_dispose(Disposer disposer) { return tree_.clear_and_dispose(disposer); } //!
Effects
: Returns the number of contained elements with the given key //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //!
Throws
: If the internal value_compare ordering function throws. size_type count(const_reference value) const { return tree_.find(value) != end(); } //!
Effects
: Returns the number of contained elements with the same key //! compared with the given comparison functor. //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //!
Throws
: If comp ordering function throws. template
size_type count(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp) != end(); } //!
Effects
: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator lower_bound(const_reference value) { return tree_.lower_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns an iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator lower_bound(const KeyType& key, KeyValueCompare comp) { return tree_.lower_bound(key, comp); } //!
Effects
: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator lower_bound(const_reference value) const { return tree_.lower_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns a const_iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.lower_bound(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator upper_bound(const_reference value) { return tree_.upper_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns an iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator upper_bound(const KeyType& key, KeyValueCompare comp) { return tree_.upper_bound(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator upper_bound(const_reference value) const { return tree_.upper_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns a const_iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.upper_bound(key, comp); } //!
Effects
: Finds an iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator find(const_reference value) { return tree_.find(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds an iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator find(const KeyType& key, KeyValueCompare comp) { return tree_.find(key, comp); } //!
Effects
: Finds a const_iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator find(const_reference value) const { return tree_.find(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a const_iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator find(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. std::pair
equal_range(const_reference value) { return tree_.equal_range(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range(const KeyType& key, KeyValueCompare comp) { return tree_.equal_range(key, comp); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. std::pair
equal_range(const_reference value) const { return tree_.equal_range(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range(const KeyType& key, KeyValueCompare comp) const { return tree_.equal_range(key, comp); } //!
Requires
: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the sg_set //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static iterator s_iterator_to(reference value) { return tree_type::s_iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! sg_set that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static const_iterator s_iterator_to(const_reference value) { return tree_type::s_iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the sg_set //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator iterator_to(reference value) { return tree_.iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! sg_set that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator iterator_to(const_reference value) const { return tree_.iterator_to(value); } //!
Requires
: value shall not be in a sg_set/sg_multiset. //! //!
Effects
: init_node puts the hook of a value in a well-known default //! state. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant time. //! //!
Note
: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { tree_type::init_node(value); } //!
Effects
: Unlinks the leftmost node from the tree. //! //!
Complexity
: Average complexity is constant time. //! //!
Throws
: Nothing. //! //!
Notes
: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. pointer unlink_leftmost_without_rebalance() { return tree_.unlink_leftmost_without_rebalance(); } //!
Requires
: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any tree. //! //!
Effects
: Replaces replace_this in its position in the //! tree with with_this. The tree does not need to be rebalanced. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { tree_.replace_node(replace_this, with_this); } //!
Effects
: Rebalances the tree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear. void rebalance() { tree_.rebalance(); } //!
Requires
: old_root is a node of a tree. //! //!
Effects
: Rebalances the subtree rooted at old_root. //! //!
Returns
: The new root of the subtree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. iterator rebalance_subtree(iterator root) { return tree_.rebalance_subtree(root); } //!
Returns
: The balance factor (alpha) used in this tree //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. float balance_factor() const { return tree_.balance_factor(); } //!
Requires
: new_alpha must be a value between 0.5 and 1.0 //! //!
Effects
: Establishes a new balance factor (alpha) and rebalances //! the tree if the new balance factor is stricter (less) than the old factor. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. void balance_factor(float new_alpha) { tree_.balance_factor(new_alpha); } /// @cond friend bool operator==(const sg_set_impl &x, const sg_set_impl &y) { return x.tree_ == y.tree_; } friend bool operator<(const sg_set_impl &x, const sg_set_impl &y) { return x.tree_ < y.tree_; } /// @endcond }; #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator!= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_set_impl
&x, const sg_set_impl
&y) #else (const sg_set_impl
&x, const sg_set_impl
&y) #endif { return !(x == y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator> #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_set_impl
&x, const sg_set_impl
&y) #else (const sg_set_impl
&x, const sg_set_impl
&y) #endif { return y < x; } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator<= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_set_impl
&x, const sg_set_impl
&y) #else (const sg_set_impl
&x, const sg_set_impl
&y) #endif { return !(y < x); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator>= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_set_impl
&x, const sg_set_impl
&y) #else (const sg_set_impl
&x, const sg_set_impl
&y) #endif { return !(x < y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline void swap #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (sg_set_impl
&x, sg_set_impl
&y) #else (sg_set_impl
&x, sg_set_impl
&y) #endif { x.swap(y); } //! Helper metafunction to define a \c sg_set that yields to the same type when the //! same options (either explicitly or implicitly) are used. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif struct make_sg_set { /// @cond typedef sg_set_impl < typename make_sgtree_opt
::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
class sg_set : public make_sg_set
::type { typedef typename make_sg_set
::type Base; public: typedef typename Base::value_compare value_compare; typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same
::value)); sg_set( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template
sg_set( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(b, e, cmp, v_traits) {} static sg_set &container_from_end_iterator(iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } static const sg_set &container_from_end_iterator(const_iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } }; #endif //! The class template sg_multiset is an intrusive container, that mimics most of //! the interface of std::sg_multiset as described in the C++ standard. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<> and //! \c compare<>. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif class sg_multiset_impl { /// @cond typedef sgtree_impl
tree_type; //Non-copyable and non-assignable sg_multiset_impl (const sg_multiset_impl&); sg_multiset_impl &operator =(const sg_multiset_impl&); typedef tree_type implementation_defined; /// @endcond public: typedef typename implementation_defined::value_type value_type; typedef typename implementation_defined::value_traits value_traits; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::key_compare key_compare; typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::reverse_iterator reverse_iterator; typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator; typedef typename implementation_defined::insert_commit_data insert_commit_data; typedef typename implementation_defined::node_traits node_traits; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_ptr node_ptr; typedef typename implementation_defined::const_node_ptr const_node_ptr; typedef typename implementation_defined::node_algorithms node_algorithms; /// @cond private: tree_type tree_; /// @endcond public: //!
Effects
: Constructs an empty sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. sg_multiset_impl( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(cmp, v_traits) {} //!
Requires
: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //!
Effects
: Constructs an empty sg_multiset and inserts elements from //! [b, e). //! //!
Complexity
: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is the distance between first and last //! //!
Throws
: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. template
sg_multiset_impl( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(false, b, e, cmp, v_traits) {} //!
Effects
: Detaches all elements from this. The objects in the sg_multiset //! are not deleted (i.e. no destructors are called). //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. ~sg_multiset_impl() {} //!
Effects
: Returns an iterator pointing to the beginning of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator begin() { return tree_.begin(); } //!
Effects
: Returns a const_iterator pointing to the beginning of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator begin() const { return tree_.begin(); } //!
Effects
: Returns a const_iterator pointing to the beginning of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cbegin() const { return tree_.cbegin(); } //!
Effects
: Returns an iterator pointing to the end of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator end() { return tree_.end(); } //!
Effects
: Returns a const_iterator pointing to the end of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator end() const { return tree_.end(); } //!
Effects
: Returns a const_iterator pointing to the end of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cend() const { return tree_.cend(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning of the //! reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rbegin() { return tree_.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rbegin() const { return tree_.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crbegin() const { return tree_.crbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rend() { return tree_.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rend() const { return tree_.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crend() const { return tree_.crend(); } //!
Precondition
: end_iterator must be a valid end iterator //! of sg_multiset. //! //!
Effects
: Returns a const reference to the sg_multiset associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static sg_multiset_impl &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member
( &tree_type::container_from_end_iterator(end_iterator) , &sg_multiset_impl::tree_); } //!
Precondition
: end_iterator must be a valid end const_iterator //! of sg_multiset. //! //!
Effects
: Returns a const reference to the sg_multiset associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static const sg_multiset_impl &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member
( &tree_type::container_from_end_iterator(end_iterator) , &sg_multiset_impl::tree_); } //!
Effects
: Returns the key_compare object used by the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: If key_compare copy-constructor throws. key_compare key_comp() const { return tree_.value_comp(); } //!
Effects
: Returns the value_compare object used by the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: If value_compare copy-constructor throws. value_compare value_comp() const { return tree_.value_comp(); } //!
Effects
: Returns true is the container is empty. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. bool empty() const { return tree_.empty(); } //!
Effects
: Returns the number of elements stored in the sg_multiset. //! //!
Complexity
: Linear to elements contained in *this if, //! constant-time size option is enabled. Constant-time otherwise. //! //!
Throws
: Nothing. size_type size() const { return tree_.size(); } //!
Effects
: Swaps the contents of two sg_multisets. //! //!
Complexity
: Constant. //! //!
Throws
: If the swap() call for the comparison functor //! found using ADL throws. Strong guarantee. void swap(sg_multiset_impl& other) { tree_.swap(other.tree_); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //!
Complexity
: Linear to erased plus inserted elements. //! //!
Throws
: If cloner throws. Basic guarantee. template
void clone_from(const sg_multiset_impl &src, Cloner cloner, Disposer disposer) { tree_.clone_from(src.tree_, cloner, disposer); } //!
Requires
: value must be an lvalue //! //!
Effects
: Inserts value into the sg_multiset. //! //!
Returns
: An iterator that points to the position where the new //! element was inserted. //! //!
Complexity
: Average complexity for insert element is at //! most logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. Strong guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(reference value) { return tree_.insert_equal(value); } //!
Requires
: value must be an lvalue //! //!
Effects
: Inserts x into the sg_multiset, using pos as a hint to //! where it will be inserted. //! //!
Returns
: An iterator that points to the position where the new //! element was inserted. //! //!
Complexity
: Logarithmic in general, but it is amortized //! constant time if t is inserted immediately before hint. //! //!
Throws
: If the internal value_compare ordering function throws. Strong guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(const_iterator hint, reference value) { return tree_.insert_equal(hint, value); } //!
Requires
: Dereferencing iterator must yield an lvalue //! of type value_type. //! //!
Effects
: Inserts a range into the sg_multiset. //! //!
Returns
: An iterator that points to the position where the new //! element was inserted. //! //!
Complexity
: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. template
void insert(Iterator b, Iterator e) { tree_.insert_equal(b, e); } //!
Effects
: Erases the element pointed to by pos. //! //!
Complexity
: Average complexity is constant time. //! //!
Returns
: An iterator to the element after the erased element. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator i) { return tree_.erase(i); } //!
Effects
: Erases the range pointed to by b end e. //! //!
Returns
: An iterator to the element after the erased elements. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator b, iterator e) { return tree_.erase(b, e); } //!
Effects
: Erases all the elements with the given value. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(value)). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return tree_.erase(value); } //!
Effects
: Erases all the elements that compare equal with //! the given key and the given comparison functor. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(key, comp)). //! //!
Throws
: If comp ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase(const KeyType& key, KeyValueCompare comp) { return tree_.erase(key, comp); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Returns
: An iterator to the element after the erased element. //! //!
Effects
: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //!
Complexity
: Average complexity for erase element is constant time. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator i, Disposer disposer) { return tree_.erase_and_dispose(i, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Returns
: An iterator to the element after the erased elements. //! //!
Effects
: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator b, iterator e, Disposer disposer) { return tree_.erase_and_dispose(b, e, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(value)). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase_and_dispose(const_reference value, Disposer disposer) { return tree_.erase_and_dispose(value, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(key, comp)). //! //!
Throws
: If comp ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer) { return tree_.erase_and_dispose(key, comp, disposer); } //!
Effects
: Erases all the elements of the container. //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { return tree_.clear(); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements of the container. //! //!
Complexity
: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
void clear_and_dispose(Disposer disposer) { return tree_.clear_and_dispose(disposer); } //!
Effects
: Returns the number of contained elements with the given key //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //!
Throws
: If the internal value_compare ordering function throws. size_type count(const_reference value) const { return tree_.count(value); } //!
Effects
: Returns the number of contained elements with the same key //! compared with the given comparison functor. //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //!
Throws
: If comp ordering function throws. template
size_type count(const KeyType& key, KeyValueCompare comp) const { return tree_.count(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator lower_bound(const_reference value) { return tree_.lower_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns an iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator lower_bound(const KeyType& key, KeyValueCompare comp) { return tree_.lower_bound(key, comp); } //!
Effects
: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator lower_bound(const_reference value) const { return tree_.lower_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns a const_iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.lower_bound(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator upper_bound(const_reference value) { return tree_.upper_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns an iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator upper_bound(const KeyType& key, KeyValueCompare comp) { return tree_.upper_bound(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator upper_bound(const_reference value) const { return tree_.upper_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns a const_iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.upper_bound(key, comp); } //!
Effects
: Finds an iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator find(const_reference value) { return tree_.find(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds an iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator find(const KeyType& key, KeyValueCompare comp) { return tree_.find(key, comp); } //!
Effects
: Finds a const_iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator find(const_reference value) const { return tree_.find(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a const_iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator find(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. std::pair
equal_range(const_reference value) { return tree_.equal_range(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range(const KeyType& key, KeyValueCompare comp) { return tree_.equal_range(key, comp); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. std::pair
equal_range(const_reference value) const { return tree_.equal_range(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range(const KeyType& key, KeyValueCompare comp) const { return tree_.equal_range(key, comp); } //!
Requires
: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the sg_multiset //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static iterator s_iterator_to(reference value) { return tree_type::s_iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! sg_multiset that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static const_iterator s_iterator_to(const_reference value) { return tree_type::s_iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the sg_multiset //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator iterator_to(reference value) { return tree_.iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! sg_multiset that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator iterator_to(const_reference value) const { return tree_.iterator_to(value); } //!
Requires
: value shall not be in a sg_multiset/sg_multiset. //! //!
Effects
: init_node puts the hook of a value in a well-known default //! state. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant time. //! //!
Note
: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { tree_type::init_node(value); } //!
Effects
: Unlinks the leftmost node from the tree. //! //!
Complexity
: Average complexity is constant time. //! //!
Throws
: Nothing. //! //!
Notes
: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. pointer unlink_leftmost_without_rebalance() { return tree_.unlink_leftmost_without_rebalance(); } //!
Requires
: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any tree. //! //!
Effects
: Replaces replace_this in its position in the //! tree with with_this. The tree does not need to be rebalanced. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { tree_.replace_node(replace_this, with_this); } //!
Effects
: Rebalances the tree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear. void rebalance() { tree_.rebalance(); } //!
Requires
: old_root is a node of a tree. //! //!
Effects
: Rebalances the subtree rooted at old_root. //! //!
Returns
: The new root of the subtree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. iterator rebalance_subtree(iterator root) { return tree_.rebalance_subtree(root); } //!
Returns
: The balance factor (alpha) used in this tree //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. float balance_factor() const { return tree_.balance_factor(); } //!
Requires
: new_alpha must be a value between 0.5 and 1.0 //! //!
Effects
: Establishes a new balance factor (alpha) and rebalances //! the tree if the new balance factor is stricter (less) than the old factor. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. void balance_factor(float new_alpha) { tree_.balance_factor(new_alpha); } /// @cond friend bool operator==(const sg_multiset_impl &x, const sg_multiset_impl &y) { return x.tree_ == y.tree_; } friend bool operator<(const sg_multiset_impl &x, const sg_multiset_impl &y) { return x.tree_ < y.tree_; } /// @endcond }; #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator!= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #else (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #endif { return !(x == y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator> #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #else (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #endif { return y < x; } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator<= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #else (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #endif { return !(y < x); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator>= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #else (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #endif { return !(x < y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline void swap #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (sg_multiset_impl
&x, sg_multiset_impl
&y) #else (sg_multiset_impl
&x, sg_multiset_impl
&y) #endif { x.swap(y); } //! Helper metafunction to define a \c sg_multiset that yields to the same type when the //! same options (either explicitly or implicitly) are used. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif struct make_sg_multiset { /// @cond typedef sg_multiset_impl < typename make_sgtree_opt
::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
class sg_multiset : public make_sg_multiset
::type { typedef typename make_sg_multiset
::type Base; public: typedef typename Base::value_compare value_compare; typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same
::value)); sg_multiset( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template
sg_multiset( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(b, e, cmp, v_traits) {} static sg_multiset &container_from_end_iterator(iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } static const sg_multiset &container_from_end_iterator(const_iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } }; #endif } //namespace intrusive } //namespace boost #include
#endif //BOOST_INTRUSIVE_SG_SET_HPP
sg_set.hpp
Page URL
File URL
Prev
23/34
Next
Download
( 84 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.