DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2006-2007 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_HASHTABLE_HPP #define BOOST_INTRUSIVE_HASHTABLE_HPP #include
//std C++ #include
#include
#include
#include
//boost #include
#include
#include
#include
//General intrusive utilities #include
#include
#include
#include
#include
#include
//Implementation utilities #include
#include
#include
namespace boost { namespace intrusive { /// @cond namespace detail{ template
struct store_hash_bool { template
struct two_or_three {one _[2 + Add];}; template
static one test(...); template
static two_or_three
test (detail::bool_
* = 0); static const std::size_t value = sizeof(test
(0)); }; template
struct store_hash_is_true { static const bool value = store_hash_bool
::value > sizeof(one)*2; }; template
struct bucket_plus_size : public detail::size_holder < Config::constant_time_size , typename Config::size_type> { typedef detail::size_holder < Config::constant_time_size , typename Config::size_type> size_traits; typedef typename Config::bucket_traits bucket_traits; bucket_plus_size(const bucket_traits &b_traits) : bucket_traits_(b_traits) {} bucket_traits bucket_traits_; }; template
struct bucket_hash_t : public detail::ebo_functor_holder
{ typedef typename Config::hash hasher; typedef detail::size_holder < Config::constant_time_size , typename Config::size_type> size_traits; typedef typename Config::bucket_traits bucket_traits; bucket_hash_t(const bucket_traits &b_traits, const hasher & h) : detail::ebo_functor_holder
(h), bucket_plus_size_(b_traits) {} bucket_plus_size
bucket_plus_size_; }; template
struct bucket_hash_equal_t : public detail::ebo_functor_holder
{ typedef typename Config::equal equal; typedef typename Config::hash hasher; typedef typename Config::bucket_traits bucket_traits; bucket_hash_equal_t(const bucket_traits &b_traits, const hasher & h, const equal &e) : detail::ebo_functor_holder
(e), bucket_hash(b_traits, h) {} bucket_hash_t
bucket_hash; }; template
struct data_t : public Config::value_traits { typedef typename Config::value_traits value_traits; typedef typename Config::equal equal; typedef typename Config::hash hasher; typedef typename Config::bucket_traits bucket_traits; data_t( const bucket_traits &b_traits, const hasher & h , const equal &e, const value_traits &val_traits) : Config::value_traits(val_traits), bucket_hash_equal_(b_traits, h, e) {} bucket_hash_equal_t
bucket_hash_equal_; }; } //namespace detail { template
struct internal_default_uset_hook { template
static detail::one test(...); template
static detail::two test(typename U::default_uset_hook* = 0); static const bool value = sizeof(test
(0)) == sizeof(detail::two); }; template
struct get_default_uset_hook { typedef typename T::default_uset_hook type; }; template < class ValueTraits , class Hash , class Equal , class SizeType , bool ConstantTimeSize , class BucketTraits , bool Power2Buckets > struct usetopt { typedef ValueTraits value_traits; typedef Hash hash; typedef Equal equal; typedef SizeType size_type; typedef BucketTraits bucket_traits; static const bool constant_time_size = ConstantTimeSize; static const bool power_2_buckets = Power2Buckets; }; struct default_bucket_traits; template
struct uset_defaults : pack_options < none , base_hook < typename detail::eval_if_c < internal_default_uset_hook
::value , get_default_uset_hook
, detail::identity
>::type > , constant_time_size
, size_type
, equal
> , hash
> , bucket_traits
, power_2_buckets
>::type {}; template
struct get_slist_impl { typedef trivial_value_traits
trivial_traits; //Reducing symbol length struct type : make_slist < typename NodeTraits::node , boost::intrusive::value_traits
, boost::intrusive::constant_time_size
, boost::intrusive::size_type
>::type {}; }; /// @endcond template
struct unordered_bucket { /// @cond typedef typename ValueTraitsOrHookOption:: template pack
::value_traits supposed_value_traits; typedef typename detail::eval_if_c < detail::external_value_traits_is_true
::value , detail::eval_value_traits
, detail::identity
>::type real_value_traits; typedef typename detail::get_node_traits
::type node_traits; typedef typename get_slist_impl
::type slist_impl; typedef detail::bucket_impl
implementation_defined; /// @endcond typedef implementation_defined type; }; template
struct unordered_bucket_ptr { /// @cond typedef typename ValueTraitsOrHookOption:: template pack
::value_traits supposed_value_traits; typedef typename detail::eval_if_c < detail::external_value_traits_is_true
::value , detail::eval_value_traits
, detail::identity
>::type real_value_traits; typedef typename detail::get_node_traits
::type::node_ptr node_ptr; typedef typename unordered_bucket
::type bucket_type; typedef typename boost::pointer_to_other
::type implementation_defined; /// @endcond typedef implementation_defined type; }; //! The class template hashtable is an intrusive hash table container, that //! is used to construct intrusive unordered_set and unordered_multiset containers. The //! no-throw guarantee holds only, if the Equal object and Hasher don't throw. //! //! hashtable is a pseudo-intrusive container: each object to be stored in the //! container must contain a proper hook, but the container also needs //! additional auxiliary memory to work: hashtable needs a pointer to an array //! of type `bucket_type` to be passed in the constructor. This bucket array must //! have at least the same lifetime as the container. This makes the use of //! hashtable more complicated than purely intrusive containers. //! `bucket_type` is default-constructible, copyable and assignable //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<>, \c hash<> and \c equal<> . //! //! hashtable only provides forward iterators but it provides 4 iterator types: //! iterator and const_iterator to navigate through the whole container and //! local_iterator and const_local_iterator to navigate through the values //! stored in a single bucket. Local iterators are faster and smaller. //! //! It's not recommended to use non constant-time size hashtables because several //! key functions, like "empty()", become non-constant time functions. Non //! constant_time size hashtables are mainly provided to support auto-unlink hooks. //! //! hashtables, does not make automatic rehashings nor //! offers functions related to a load factor. Rehashing can be explicitly requested //! and the user must provide a new bucket array that will be used from that moment. //! //! Since no automatic rehashing is done, iterators are never invalidated when //! inserting or erasing elements. Iterators are only invalidated when rehashing. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif class hashtable_impl : private detail::data_t
{ public: typedef typename Config::value_traits value_traits; /// @cond static const bool external_value_traits = detail::external_value_traits_is_true
::value; typedef typename detail::eval_if_c < external_value_traits , detail::eval_value_traits
, detail::identity
>::type real_value_traits; typedef typename Config::bucket_traits bucket_traits; static const bool external_bucket_traits = detail::external_bucket_traits_is_true
::value; typedef typename detail::eval_if_c < external_bucket_traits , detail::eval_bucket_traits
, detail::identity
>::type real_bucket_traits; typedef typename get_slist_impl
::type slist_impl; /// @endcond typedef typename real_value_traits::pointer pointer; typedef typename real_value_traits::const_pointer const_pointer; typedef typename std::iterator_traits
::value_type value_type; typedef typename std::iterator_traits
::reference reference; typedef typename std::iterator_traits
::reference const_reference; typedef typename std::iterator_traits
::difference_type difference_type; typedef typename Config::size_type size_type; typedef value_type key_type; typedef typename Config::equal key_equal; typedef typename Config::hash hasher; typedef detail::bucket_impl
bucket_type; typedef typename boost::pointer_to_other
::type bucket_ptr; typedef typename slist_impl::iterator siterator; typedef typename slist_impl::const_iterator const_siterator; typedef detail::hashtable_iterator
iterator; typedef detail::hashtable_iterator
const_iterator; typedef typename real_value_traits::node_traits node_traits; typedef typename node_traits::node node; typedef typename boost::pointer_to_other
::type node_ptr; typedef typename boost::pointer_to_other
::type const_node_ptr; typedef typename slist_impl::node_algorithms node_algorithms; static const bool constant_time_size = Config::constant_time_size; static const bool stateful_value_traits = detail::store_cont_ptr_on_it
::value; static const bool store_hash = detail::store_hash_is_true
::value; /// @cond private: typedef detail::bool_
store_hash_t; typedef detail::size_holder
size_traits; typedef detail::data_t
base_type; typedef detail::transform_iterator < typename slist_impl::iterator , detail::node_to_value
> local_iterator_impl; typedef detail::transform_iterator < typename slist_impl::iterator , detail::node_to_value
> const_local_iterator_impl; //noncopyable hashtable_impl (const hashtable_impl&); hashtable_impl operator =(const hashtable_impl&); enum { safemode_or_autounlink = (int)real_value_traits::link_mode == (int)auto_unlink || (int)real_value_traits::link_mode == (int)safe_link }; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(constant_time_size && ((int)real_value_traits::link_mode == (int)auto_unlink))); static const bool power_2_buckets = Config::power_2_buckets; std::size_t from_hash_to_bucket(std::size_t hash_value) const { return from_hash_to_bucket(hash_value, detail::bool_
()); } std::size_t from_hash_to_bucket(std::size_t hash_value, detail::bool_
) const { return hash_value % this->get_real_bucket_traits().bucket_count(); } std::size_t from_hash_to_bucket(std::size_t hash_value, detail::bool_
) const { return hash_value & (this->get_real_bucket_traits().bucket_count() - 1); } const key_equal &priv_equal() const { return static_cast
(this->bucket_hash_equal_.get()); } key_equal &priv_equal() { return static_cast
(this->bucket_hash_equal_.get()); } const real_bucket_traits &get_real_bucket_traits(detail::bool_
) const { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; } const real_bucket_traits &get_real_bucket_traits(detail::bool_
) const { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_.get_bucket_traits(*this); } real_bucket_traits &get_real_bucket_traits(detail::bool_
) { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; } real_bucket_traits &get_real_bucket_traits(detail::bool_
) { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_.get_bucket_traits(*this); } const real_bucket_traits &get_real_bucket_traits() const { return this->get_real_bucket_traits(detail::bool_
()); } real_bucket_traits &get_real_bucket_traits() { return this->get_real_bucket_traits(detail::bool_
()); } const hasher &priv_hasher() const { return static_cast
(this->bucket_hash_equal_.bucket_hash.get()); } hasher &priv_hasher() { return static_cast
(this->bucket_hash_equal_.bucket_hash.get()); } bucket_ptr priv_buckets() const { return this->get_real_bucket_traits().bucket_begin(); } size_type priv_buckets_len() const { return this->get_real_bucket_traits().bucket_count(); } static node_ptr uncast(const_node_ptr ptr) { return node_ptr(const_cast
(detail::get_pointer(ptr))); } node &from_value_to_node(value_type &v) { return *this->get_real_value_traits().to_node_ptr(v); } const node &from_value_to_node(const value_type &v) const { return *this->get_real_value_traits().to_node_ptr(v); } size_traits &priv_size_traits() { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_; } const size_traits &priv_size_traits() const { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_; } struct insert_commit_data_impl { size_type hash; }; /// @endcond public: class local_iterator : public local_iterator_impl { public: local_iterator() {} local_iterator(siterator sit, const hashtable_impl *cont) : local_iterator_impl(sit, cont) {} }; class const_local_iterator : public const_local_iterator_impl { public: const_local_iterator() {} const_local_iterator(siterator sit, const hashtable_impl *cont) : const_local_iterator_impl(sit, cont) {} }; typedef insert_commit_data_impl insert_commit_data; /// @cond const real_value_traits &get_real_value_traits(detail::bool_
) const { return *this; } const real_value_traits &get_real_value_traits(detail::bool_
) const { return base_type::get_value_traits(*this); } real_value_traits &get_real_value_traits(detail::bool_
) { return *this; } real_value_traits &get_real_value_traits(detail::bool_
) { return base_type::get_value_traits(*this); } /// @endcond public: const real_value_traits &get_real_value_traits() const { return this->get_real_value_traits(detail::bool_
()); } real_value_traits &get_real_value_traits() { return this->get_real_value_traits(detail::bool_
()); } //!
Requires
: buckets must not be being used by any other resource. //! //!
Effects
: Constructs an empty unordered_set, storing a reference //! to the bucket array and copies of the key_hasher and equal_func functors. //! //!
Complexity
: Constant. //! //!
Throws
: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor or invocation of hash_func or equal_func throws. //! //!
Notes
: buckets array must be disposed only after //! *this is disposed. hashtable_impl ( const bucket_traits &b_traits , const hasher & hash_func = hasher() , const key_equal &equal_func = key_equal() , const value_traits &v_traits = value_traits()) : base_type(b_traits, hash_func, equal_func, v_traits) { priv_clear_buckets(); this->priv_size_traits().set_size(size_type(0)); BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_buckets_len() != 0); //Check power of two bucket array if the option is activated BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (this->priv_buckets_len() & (this->priv_buckets_len()-1)))); } //!
Effects
: Detaches all elements from this. The objects in the unordered_set //! are not deleted (i.e. no destructors are called). //! //!
Complexity
: Linear to the number of elements in the unordered_set, if //! it's a safe-mode or auto-unlink value. Otherwise constant. //! //!
Throws
: Nothing. ~hashtable_impl() { this->clear(); } //!
Effects
: Returns an iterator pointing to the beginning of the unordered_set. //! //!
Complexity
: Amortized constant time. //! Worst case (empty unordered_set): O(this->bucket_count()) //! //!
Throws
: Nothing. iterator begin() { size_type bucket_num; return iterator(this->priv_begin(bucket_num), this); } //!
Effects
: Returns a const_iterator pointing to the beginning //! of the unordered_set. //! //!
Complexity
: Amortized constant time. //! Worst case (empty unordered_set): O(this->bucket_count()) //! //!
Throws
: Nothing. const_iterator begin() const { return this->cbegin(); } //!
Effects
: Returns a const_iterator pointing to the beginning //! of the unordered_set. //! //!
Complexity
: Amortized constant time. //! Worst case (empty unordered_set): O(this->bucket_count()) //! //!
Throws
: Nothing. const_iterator cbegin() const { size_type bucket_num; return const_iterator(this->priv_begin(bucket_num), this); } //!
Effects
: Returns an iterator pointing to the end of the unordered_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator end() { return iterator(invalid_local_it(this->get_real_bucket_traits()), 0); } //!
Effects
: Returns a const_iterator pointing to the end of the unordered_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator end() const { return this->cend(); } //!
Effects
: Returns a const_iterator pointing to the end of the unordered_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cend() const { return const_iterator(invalid_local_it(this->get_real_bucket_traits()), 0); } //!
Effects
: Returns the hasher object used by the unordered_set. //! //!
Complexity
: Constant. //! //!
Throws
: If hasher copy-constructor throws. hasher hash_function() const { return this->priv_hasher(); } //!
Effects
: Returns the key_equal object used by the unordered_set. //! //!
Complexity
: Constant. //! //!
Throws
: If key_equal copy-constructor throws. key_equal key_eq() const { return this->priv_equal(); } //!
Effects
: Returns true is the container is empty. //! //!
Complexity
: if constant_time_size is false, average constant time //! (worst case, with empty() == true): O(this->bucket_count()). //! Otherwise constant. //! //!
Throws
: Nothing. bool empty() const { if(constant_time_size){ return !this->size(); } else{ size_type buckets_len = this->priv_buckets_len(); const bucket_type *b = detail::get_pointer(this->priv_buckets()); for (size_type n = 0; n < buckets_len; ++n, ++b){ if(!b->empty()){ return false; } } return true; } } //!
Effects
: Returns the number of elements stored in the unordered_set. //! //!
Complexity
: Linear to elements contained in *this if //! constant_time_size is false. Constant-time otherwise. //! //!
Throws
: Nothing. size_type size() const { if(constant_time_size) return this->priv_size_traits().get_size(); else{ size_type len = 0; size_type buckets_len = this->priv_buckets_len(); const bucket_type *b = detail::get_pointer(this->priv_buckets()); for (size_type n = 0; n < buckets_len; ++n, ++b){ len += b->size(); } return len; } } //!
Requires
: the hasher and the equality function unqualified swap //! call should not throw. //! //!
Effects
: Swaps the contents of two unordered_sets. //! Swaps also the contained bucket array and equality and hasher functors. //! //!
Complexity
: Constant. //! //!
Throws
: If the swap() call for the comparison or hash functors //! found using ADL throw. Basic guarantee. void swap(hashtable_impl& other) { using std::swap; //These can throw swap(this->priv_equal(), other.priv_equal()); swap(this->priv_hasher(), other.priv_hasher()); //These can't throw swap(this->get_real_bucket_traits(), other.get_real_bucket_traits()); if(constant_time_size){ size_type backup = this->priv_size_traits().get_size(); this->priv_size_traits().set_size(other.priv_size_traits().get_size()); other.priv_size_traits().set_size(backup); } } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //!
Complexity
: Linear to erased plus inserted elements. //! //!
Throws
: If cloner throws. Basic guarantee. template
void clone_from(const hashtable_impl &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); if(!constant_time_size || !src.empty()){ const size_type src_bucket_count = src.bucket_count(); const size_type dst_bucket_count = this->bucket_count(); //Check power of two bucket array if the option is activated BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (src_bucket_count & (src_bucket_count-1)))); BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (dst_bucket_count & (dst_bucket_count-1)))); //If src bucket count is bigger or equal, structural copy is possible if(src_bucket_count >= dst_bucket_count){ //First clone the first ones const bucket_ptr src_buckets = src.priv_buckets(); const bucket_ptr dst_buckets = this->priv_buckets(); size_type constructed; BOOST_INTRUSIVE_TRY{ for( constructed = 0 ; constructed < dst_bucket_count ; ++constructed){ dst_buckets[constructed].clone_from ( src_buckets[constructed] , detail::node_cloner
(cloner, this) , detail::node_disposer
(disposer, this) ); } if(src_bucket_count != dst_bucket_count){ //Now insert the remaining ones using the modulo trick for(//"constructed" comes from the previous loop ; constructed < src_bucket_count ; ++constructed){ bucket_type &dst_b = (power_2_buckets) ? dst_buckets[constructed & (dst_bucket_count-1)] : dst_buckets[constructed % dst_bucket_count]; bucket_type &src_b = src_buckets[constructed]; for( siterator b(src_b.begin()), e(src_b.end()) ; b != e ; ++b){ dst_b.push_front(*detail::node_cloner
(cloner, this)(b.pointed_node())); } } } } BOOST_INTRUSIVE_CATCH(...){ while(constructed--){ dst_buckets[constructed].clear_and_dispose (detail::node_disposer
(disposer, this)); } BOOST_INTRUSIVE_RETHROW; } BOOST_INTRUSIVE_CATCH_END this->priv_size_traits().set_size(src.priv_size_traits().get_size()); } else{ //Unlike previous cloning algorithm, this can throw //if cloner, the hasher or comparison functor throw const_iterator b(src.begin()), e(src.end()); BOOST_INTRUSIVE_TRY{ for(; b != e; ++b){ this->insert_equal(*cloner(*b)); } } BOOST_INTRUSIVE_CATCH(...){ this->clear_and_dispose(disposer); BOOST_INTRUSIVE_RETHROW; } BOOST_INTRUSIVE_CATCH_END } } } iterator insert_equal(reference value) { size_type bucket_num, hash_value; siterator it = this->priv_find (value, this->priv_hasher(), this->priv_equal(), bucket_num, hash_value); bucket_type &b = this->priv_buckets()[bucket_num]; if(it == invalid_local_it(this->get_real_bucket_traits())){ it = b.before_begin(); } node_ptr n = node_ptr(&from_value_to_node(value)); this->priv_store_hash(n, hash_value, store_hash_t()); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n)); this->priv_size_traits().increment(); return iterator(b.insert_after(it, *n), this); } template
void insert_equal(Iterator b, Iterator e) { for (; b != e; ++b) this->insert_equal(*b); } //!
Requires
: value must be an lvalue //! //!
Effects
: Tries to inserts value into the unordered_set. //! //!
Returns
: If the value //! is not already present inserts it and returns a pair containing the //! iterator to the new value and true. If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: If the internal hasher or the equality functor throws. Strong guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair
insert_unique(reference value) { insert_commit_data commit_data; std::pair
ret = this->insert_unique_check (value, this->priv_hasher(), this->priv_equal(), commit_data); if(!ret.second) return ret; return std::pair
(this->insert_unique_commit(value, commit_data), true); } //!
Requires
: Dereferencing iterator must yield an lvalue //! of type value_type. //! //!
Effects
: Equivalent to this->insert(t) for each element in [b, e). //! //!
Complexity
: Average case O(N), where N is std::distance(b, e). //! Worst case O(N*this->size()). //! //!
Throws
: If the internal hasher or the equality functor throws. Basic guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. template
void insert_unique(Iterator b, Iterator e) { for (; b != e; ++b) this->insert_unique(*b); } //!
Requires
: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //!
Effects
: Checks if a value can be inserted in the unordered_set, using //! a user provided key instead of the value itself. //! //!
Returns
: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: If hash_func or equal_func throw. Strong guarantee. //! //!
Notes
: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the hash or the equality is much cheaper to //! construct than the value_type and this function offers the possibility to //! use that the part to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the unordered_set. //! //! After a successful rehashing insert_commit_data remains valid. template
std::pair
insert_unique_check ( const KeyType &key , KeyHasher hash_func , KeyValueEqual equal_func , insert_commit_data &commit_data) { size_type bucket_num; siterator prev_pos = this->priv_find(key, hash_func, equal_func, bucket_num, commit_data.hash); bool success = prev_pos == invalid_local_it(this->get_real_bucket_traits()); if(success){ prev_pos = this->priv_buckets()[bucket_num].before_begin(); } return std::pair
(iterator(prev_pos, this),success); } //!
Requires
: value must be an lvalue of type value_type. commit_data //! must have been obtained from a previous call to "insert_check". //! No objects should have been inserted or erased from the unordered_set between //! the "insert_check" that filled "commit_data" and the call to "insert_commit". //! //!
Effects
: Inserts the value in the unordered_set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //!
Returns
: An iterator to the newly inserted object. //! //!
Complexity
: Constant time. //! //!
Throws
: Nothing. //! //!
Notes
: This function has only sense if a "insert_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. //! //! After a successful rehashing insert_commit_data remains valid. iterator insert_unique_commit(reference value, const insert_commit_data &commit_data) { size_type bucket_num = from_hash_to_bucket(commit_data.hash); bucket_type &b = this->priv_buckets()[bucket_num]; this->priv_size_traits().increment(); node_ptr n = node_ptr(&from_value_to_node(value)); this->priv_store_hash(n, commit_data.hash, store_hash_t()); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n)); return iterator( b.insert_after(b.before_begin(), *n), this); } //!
Effects
: Erases the element pointed to by i. //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased element. No destructors are called. void erase(const_iterator i) { this->erase_and_dispose(i, detail::null_disposer()); } //!
Effects
: Erases the range pointed to by b end e. //! //!
Complexity
: Average case O(std::distance(b, e)), //! worst case O(this->size()). //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void erase(const_iterator b, const_iterator e) { this->erase_and_dispose(b, e, detail::null_disposer()); } //!
Effects
: Erases all the elements with the given value. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: Average case O(this->count(value)). //! Worst case O(this->size()). //! //!
Throws
: If the internal hasher or the equality functor throws. //! Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return this->erase(value, this->priv_hasher(), this->priv_equal()); } //!
Requires
: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //!
Effects
: Erases all the elements that have the same hash and //! compare equal with the given key. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: Average case O(this->count(value)). //! Worst case O(this->size()). //! //!
Throws
: If hash_func or equal_func throw. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase(const KeyType& key, KeyHasher hash_func, KeyValueEqual equal_func) { return this->erase_and_dispose(key, hash_func, equal_func, detail::null_disposer()); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases the element pointed to by i. //! Disposer::operator()(pointer) is called for the removed element. //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
void erase_and_dispose(const_iterator i, Disposer disposer) { siterator to_erase(i.slist_it()); bucket_ptr f(priv_buckets()), l(f + priv_buckets_len()); bucket_type &b = this->priv_buckets()[bucket_type::get_bucket_num(to_erase, *f, *l)]; b.erase_after_and_dispose (b.previous(to_erase), detail::node_disposer
(disposer, this)); this->priv_size_traits().decrement(); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Complexity
: Average case O(std::distance(b, e)), //! worst case O(this->size()). //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
void erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { if(b == e) return; //Get the bucket number and local iterator for both iterators bucket_ptr f(priv_buckets()), l(f + priv_buckets_len()); size_type first_bucket_num = bucket_type::get_bucket_num(b.slist_it(), *f, *l); siterator before_first_local_it = priv_buckets()[first_bucket_num].previous(b.slist_it()); size_type last_bucket_num; siterator last_local_it; //For the end iterator, we will assign the end iterator //of the last bucket if(e == end()){ last_bucket_num = this->bucket_count() - 1; last_local_it = priv_buckets()[last_bucket_num].end(); } else{ last_local_it = e.slist_it(); last_bucket_num = bucket_type::get_bucket_num(last_local_it, *f, *l); } const bucket_ptr buckets = priv_buckets(); //First erase the nodes of the first bucket { bucket_type &first_b = buckets[first_bucket_num]; siterator nxt(before_first_local_it); ++nxt; siterator end = first_b.end(); while(nxt != end){ nxt = first_b.erase_after_and_dispose ( before_first_local_it , detail::node_disposer
(disposer, this)); this->priv_size_traits().decrement(); } } //Now fully clear the intermediate buckets for(size_type i = first_bucket_num+1; i < last_bucket_num; ++i){ bucket_type &b = buckets[i]; if(b.empty()) continue; siterator b_begin(b.before_begin()); siterator nxt(b_begin); ++nxt; siterator end = b.end(); while(nxt != end){ nxt = b.erase_after_and_dispose (b_begin, detail::node_disposer
(disposer, this)); this->priv_size_traits().decrement(); } } //Now erase nodes from the last bucket { bucket_type &last_b = buckets[last_bucket_num]; siterator b_begin(last_b.before_begin()); siterator nxt(b_begin); ++nxt; while(nxt != last_local_it){ nxt = last_b.erase_after_and_dispose (b_begin, detail::node_disposer
(disposer, this)); this->priv_size_traits().decrement(); } } } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: Average case O(this->count(value)). //! Worst case O(this->size()). //! //!
Throws
: If the internal hasher or the equality functor throws. //! Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase_and_dispose(const_reference value, Disposer disposer) { return this->erase_and_dispose(value, priv_hasher(), priv_equal(), disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given key. //! according to the comparison functor "equal_func". //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: Average case O(this->count(value)). //! Worst case O(this->size()). //! //!
Throws
: If hash_func or equal_func throw. Basic guarantee. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
size_type erase_and_dispose(const KeyType& key, KeyHasher hash_func ,KeyValueEqual equal_func, Disposer disposer) { size_type count(0); if(constant_time_size && this->empty()){ return 0; } bucket_type &b = this->priv_buckets()[from_hash_to_bucket(hash_func(key))]; siterator it = b.begin(); siterator prev = b.before_begin(); bool found = false; //Find equal value while(it != b.end()){ const value_type &v = *this->get_real_value_traits().to_value_ptr(it.pointed_node()); if(equal_func(key, v)){ found = true; break; } ++prev; ++it; } if(!found) return 0; //If found erase all equal values for(siterator end = b.end(); it != end && equal_func(key, *this->get_real_value_traits().to_value_ptr(it.pointed_node())) ; ++count){ it = b.erase_after_and_dispose (prev, detail::node_disposer
(disposer, this)); this->priv_size_traits().decrement(); } return count; } //!
Effects
: Erases all of the elements. //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { priv_clear_buckets(); this->priv_size_traits().set_size(size_type(0)); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all of the elements. //! //!
Complexity
: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
void clear_and_dispose(Disposer disposer) { if(!constant_time_size || !this->empty()){ size_type num_buckets = this->bucket_count(); bucket_ptr b = this->priv_buckets(); for(; num_buckets--; ++b){ b->clear_and_dispose (detail::node_disposer
(disposer, this)); } this->priv_size_traits().set_size(size_type(0)); } } //!
Effects
: Returns the number of contained elements with the given value //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: If the internal hasher or the equality functor throws. size_type count(const_reference value) const { return this->count(value, this->priv_hasher(), this->priv_equal()); } //!
Requires
: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //!
Effects
: Returns the number of contained elements with the given key //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: If hash_func or equal throw. template
size_type count(const KeyType &key, const KeyHasher &hash_func, const KeyValueEqual &equal_func) const { size_type bucket_n1, bucket_n2, count; this->priv_equal_range(key, hash_func, equal_func, bucket_n1, bucket_n2, count); return count; } //!
Effects
: Finds an iterator to the first element is equal to //! "value" or end() if that element does not exist. //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: If the internal hasher or the equality functor throws. iterator find(const_reference value) { return this->find(value, this->priv_hasher(), this->priv_equal()); } //!
Requires
: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //!
Effects
: Finds an iterator to the first element whose key is //! "key" according to the given hash and equality functor or end() if //! that element does not exist. //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: If hash_func or equal_func throw. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator find(const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) { size_type bucket_n, hash; siterator local_it = this->priv_find(key, hash_func, equal_func, bucket_n, hash); return iterator(local_it, this); } //!
Effects
: Finds a const_iterator to the first element whose key is //! "key" or end() if that element does not exist. //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: If the internal hasher or the equality functor throws. const_iterator find(const_reference value) const { return this->find(value, this->priv_hasher(), this->priv_equal()); } //!
Requires
: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //!
Effects
: Finds an iterator to the first element whose key is //! "key" according to the given hasher and equality functor or end() if //! that element does not exist. //! //!
Complexity
: Average case O(1), worst case O(this->size()). //! //!
Throws
: If hash_func or equal_func throw. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator find (const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) const { size_type bucket_n, hash_value; siterator sit = this->priv_find(key, hash_func, equal_func, bucket_n, hash_value); return const_iterator(sit, this); } //!
Effects
: Returns a range containing all elements with values equivalent //! to value. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //!
Complexity
: Average case O(this->count(value)). Worst case O(this->size()). //! //!
Throws
: If the internal hasher or the equality functor throws. std::pair
equal_range(const_reference value) { return this->equal_range(value, this->priv_hasher(), this->priv_equal()); } //!
Requires
: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //!
Effects
: Returns a range containing all elements with equivalent //! keys. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //!
Complexity
: Average case O(this->count(key, hash_func, equal_func)). //! Worst case O(this->size()). //! //!
Throws
: If hash_func or the equal_func throw. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range (const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) { size_type bucket_n1, bucket_n2, count; std::pair
ret = this->priv_equal_range (key, hash_func, equal_func, bucket_n1, bucket_n2, count); return std::pair
(iterator(ret.first, this), iterator(ret.second, this)); } //!
Effects
: Returns a range containing all elements with values equivalent //! to value. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //!
Complexity
: Average case O(this->count(value)). Worst case O(this->size()). //! //!
Throws
: If the internal hasher or the equality functor throws. std::pair
equal_range(const_reference value) const { return this->equal_range(value, this->priv_hasher(), this->priv_equal()); } //!
Requires
: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //!
Effects
: Returns a range containing all elements with equivalent //! keys. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //!
Complexity
: Average case O(this->count(key, hash_func, equal_func)). //! Worst case O(this->size()). //! //!
Throws
: If the hasher or equal_func throw. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range (const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) const { size_type bucket_n1, bucket_n2, count; std::pair
ret = this->priv_equal_range(key, hash_func, equal_func, bucket_n1, bucket_n2, count); return std::pair
(const_iterator(ret.first, this), const_iterator(ret.second, this)); } //!
Requires
: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator belonging to the unordered_set //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: If the internal hash function throws. iterator iterator_to(reference value) { return iterator(bucket_type::s_iterator_to(from_value_to_node(value)), this); } //!
Requires
: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator belonging to the //! unordered_set that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: If the internal hash function throws. const_iterator iterator_to(const_reference value) const { return const_iterator(bucket_type::s_iterator_to(from_value_to_node(const_cast
(value))), this); } //!
Requires
: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid local_iterator belonging to the unordered_set //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static local_iterator s_local_iterator_to(reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); siterator sit = bucket_type::s_iterator_to(((hashtable_impl*)0)->from_value_to_node(value)); return local_iterator(sit, (hashtable_impl*)0); } //!
Requires
: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_local_iterator belonging to //! the unordered_set that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static const_local_iterator s_local_iterator_to(const_reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); siterator sit = bucket_type::s_iterator_to(((hashtable_impl*)0)->from_value_to_node(const_cast
(value))); return const_local_iterator(sit, (hashtable_impl*)0); } //!
Requires
: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid local_iterator belonging to the unordered_set //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. local_iterator local_iterator_to(reference value) { siterator sit = bucket_type::s_iterator_to(this->from_value_to_node(value)); return local_iterator(sit, this); } //!
Requires
: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_local_iterator belonging to //! the unordered_set that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_local_iterator local_iterator_to(const_reference value) const { siterator sit = bucket_type::s_iterator_to (const_cast
(this->from_value_to_node(value))); return const_local_iterator(sit, this); } //!
Effects
: Returns the number of buckets passed in the constructor //! or the last rehash function. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. size_type bucket_count() const { return this->priv_buckets_len(); } //!
Requires
: n is in the range [0, this->bucket_count()). //! //!
Effects
: Returns the number of elements in the nth bucket. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. size_type bucket_size(size_type n) const { return this->priv_buckets()[n].size(); } //!
Effects
: Returns the index of the bucket in which elements //! with keys equivalent to k would be found, if any such element existed. //! //!
Complexity
: Constant. //! //!
Throws
: If the hash functor throws. //! //!
Note
: the return value is in the range [0, this->bucket_count()). size_type bucket(const key_type& k) const { return this->bucket(k, this->priv_hasher()); } //!
Requires
: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //!
Effects
: Returns the index of the bucket in which elements //! with keys equivalent to k would be found, if any such element existed. //! //!
Complexity
: Constant. //! //!
Throws
: If hash_func throws. //! //!
Note
: the return value is in the range [0, this->bucket_count()). template
size_type bucket(const KeyType& k, const KeyHasher &hash_func) const { return from_hash_to_bucket(hash_func(k)); } //!
Effects
: Returns the bucket array pointer passed in the constructor //! or the last rehash function. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. bucket_ptr bucket_pointer() const { return this->priv_buckets(); } //!
Requires
: n is in the range [0, this->bucket_count()). //! //!
Effects
: Returns a local_iterator pointing to the beginning //! of the sequence stored in the bucket n. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. local_iterator begin(size_type n) { return local_iterator(this->priv_buckets()[n].begin(), this); } //!
Requires
: n is in the range [0, this->bucket_count()). //! //!
Effects
: Returns a const_local_iterator pointing to the beginning //! of the sequence stored in the bucket n. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator begin(size_type n) const { return this->cbegin(n); } //!
Requires
: n is in the range [0, this->bucket_count()). //! //!
Effects
: Returns a const_local_iterator pointing to the beginning //! of the sequence stored in the bucket n. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator cbegin(size_type n) const { siterator sit = const_cast
(this->priv_buckets()[n]).begin(); return const_local_iterator(sit, this); } //!
Requires
: n is in the range [0, this->bucket_count()). //! //!
Effects
: Returns a local_iterator pointing to the end //! of the sequence stored in the bucket n. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. local_iterator end(size_type n) { return local_iterator(this->priv_buckets()[n].end(), this); } //!
Requires
: n is in the range [0, this->bucket_count()). //! //!
Effects
: Returns a const_local_iterator pointing to the end //! of the sequence stored in the bucket n. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator end(size_type n) const { return this->cend(n); } //!
Requires
: n is in the range [0, this->bucket_count()). //! //!
Effects
: Returns a const_local_iterator pointing to the end //! of the sequence stored in the bucket n. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator cend(size_type n) const { return const_local_iterator(const_cast
(this->priv_buckets()[n]).end(), this); } //!
Requires
: new_buckets must be a pointer to a new bucket array //! or the same as the old bucket array. new_size is the length of the //! the array pointed by new_buckets. If new_buckets == this->bucket_pointer() //! n can be bigger or smaller than this->bucket_count(). //! //!
Effects
: Updates the internal reference with the new bucket erases //! the values from the old bucket and inserts then in the new one. //! //!
Complexity
: Average case linear in this->size(), worst case quadratic. //! //!
Throws
: If the hasher functor throws. Basic guarantee. void rehash(const bucket_traits &new_bucket_traits) { bucket_ptr new_buckets = new_bucket_traits.bucket_begin(); size_type new_buckets_len = new_bucket_traits.bucket_count(); bucket_ptr old_buckets = this->priv_buckets(); size_type old_buckets_len = this->priv_buckets_len(); //Check power of two bucket array if the option is activated BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (new_buckets_len & (new_buckets_len-1u)))); BOOST_INTRUSIVE_TRY{ size_type n = 0; const bool same_buffer = old_buckets == new_buckets; //If the new bucket length is a common factor //of the old one we can avoid hash calculations. const bool fast_shrink = (old_buckets_len > new_buckets_len) && (power_2_buckets ||(old_buckets_len % new_buckets_len) == 0); //If we are shrinking the same bucket array and it's //is a fast shrink, just rehash the last nodes if(same_buffer && fast_shrink){ n = new_buckets_len; } //Iterate through nodes for(; n < old_buckets_len; ++n){ bucket_type &old_bucket = old_buckets[n]; if(!fast_shrink){ siterator before_i(old_bucket.before_begin()); siterator end(old_bucket.end()); siterator i(old_bucket.begin()); for(;i != end; ++i){ const value_type &v = *this->get_real_value_traits().to_value_ptr(i.pointed_node()); const std::size_t hash_value = this->priv_hash_when_rehashing(v, store_hash_t()); const size_type new_n = (power_2_buckets) ? (hash_value & (new_buckets_len-1)) : (hash_value % new_buckets_len); //If this is a buffer expansion don't move if it's not necessary if(same_buffer && new_n == n){ ++before_i; } else{ bucket_type &new_b = new_buckets[new_n]; new_b.splice_after(new_b.before_begin(), old_bucket, before_i); i = before_i; } } } else{ const size_type new_n = (power_2_buckets) ? (n & (new_buckets_len-1)) : (n % new_buckets_len); bucket_type &new_b = new_buckets[new_n]; new_b.splice_after(new_b.before_begin(), old_bucket); } } this->get_real_bucket_traits()= new_bucket_traits; } BOOST_INTRUSIVE_CATCH(...){ for(size_type n = 0; n < new_buckets_len; ++n){ if(safemode_or_autounlink){ new_buckets[n].clear_and_dispose (detail::init_disposer
()); old_buckets[n].clear_and_dispose (detail::init_disposer
()); } else{ new_buckets[n].clear(); old_buckets[n].clear(); } } this->priv_size_traits().set_size(size_type(0)); BOOST_INTRUSIVE_RETHROW; } BOOST_INTRUSIVE_CATCH_END } //!
Effects
: Returns the nearest new bucket count optimized for //! the container that is bigger than n. This suggestion can be used //! to create bucket arrays with a size that will usually improve //! container's performance. If such value does not exist, the //! higher possible value is returned. //! //!
Complexity
: Amortized constant time. //! //!
Throws
: Nothing. static size_type suggested_upper_bucket_count(size_type n) { const std::size_t *primes = &detail::prime_list_holder<0>::prime_list[0]; const std::size_t *primes_end = primes + detail::prime_list_holder<0>::prime_list_size; size_type const* bound = std::lower_bound(primes, primes_end, n); if(bound == primes_end) bound--; return size_type(*bound); } //!
Effects
: Returns the nearest new bucket count optimized for //! the container that is smaller than n. This suggestion can be used //! to create bucket arrays with a size that will usually improve //! container's performance. If such value does not exist, the //! lower possible value is returned. //! //!
Complexity
: Amortized constant time. //! //!
Throws
: Nothing. static size_type suggested_lower_bucket_count(size_type n) { const std::size_t *primes = &detail::prime_list_holder<0>::prime_list[0]; const std::size_t *primes_end = primes + detail::prime_list_holder<0>::prime_list_size; size_type const* bound = std::upper_bound(primes, primes_end, n); if(bound != primes_end) bound--; return size_type(*bound); } /// @cond private: std::size_t priv_hash_when_rehashing(const value_type &v, detail::true_) { return node_traits::get_hash(this->get_real_value_traits().to_node_ptr(v)); } std::size_t priv_hash_when_rehashing(const value_type &v, detail::false_) { return priv_hasher()(v); } void priv_store_hash(node_ptr p, std::size_t h, detail::true_) { return node_traits::set_hash(p, h); } void priv_store_hash(node_ptr, std::size_t, detail::false_) {} static siterator invalid_local_it(const real_bucket_traits &b) { return b.bucket_begin()->end(); } siterator priv_begin(size_type &bucket_num) const { size_type buckets_len = this->priv_buckets_len(); for (bucket_num = 0; bucket_num < buckets_len; ++bucket_num){ bucket_type &b = this->priv_buckets()[bucket_num]; if(!b.empty()) return b.begin(); } return invalid_local_it(this->get_real_bucket_traits()); } void priv_clear_buckets() { priv_clear_buckets(this->priv_buckets(), this->priv_buckets_len()); } static void priv_clear_buckets(bucket_ptr buckets_ptr, size_type buckets_len) { for(; buckets_len--; ++buckets_ptr){ if(safemode_or_autounlink){ buckets_ptr->clear_and_dispose(detail::init_disposer
()); } else{ buckets_ptr->clear(); } } } template
siterator priv_find ( const KeyType &key, KeyHasher hash_func , KeyValueEqual equal_func, size_type &bucket_number, size_type &h) const { bucket_number = from_hash_to_bucket((h = hash_func(key))); if(constant_time_size && this->empty()){ return invalid_local_it(this->get_real_bucket_traits()); } bucket_type &b = this->priv_buckets()[bucket_number]; siterator it = b.begin(); while(it != b.end()){ const value_type &v = *this->get_real_value_traits().to_value_ptr(it.pointed_node()); if(equal_func(key, v)){ return it; } ++it; } return invalid_local_it(this->get_real_bucket_traits()); } template
std::pair
priv_equal_range ( const KeyType &key , KeyHasher hash_func , KeyValueEqual equal_func , size_type &bucket_number_first , size_type &bucket_number_second , size_type &count) const { size_type h; count = 0; //Let's see if the element is present std::pair
to_return ( priv_find(key, hash_func, equal_func, bucket_number_first, h) , invalid_local_it(this->get_real_bucket_traits())); if(to_return.first == to_return.second){ bucket_number_second = bucket_number_first; return to_return; } ++count; //If it's present, find the first that it's not equal in //the same bucket bucket_type &b = this->priv_buckets()[bucket_number_first]; siterator it = to_return.first; ++it; while(it != b.end()){ const value_type &v = *this->get_real_value_traits().to_value_ptr(it.pointed_node()); if(!equal_func(key, v)){ to_return.second = it; bucket_number_second = bucket_number_first; return to_return; } ++it; ++count; } //If we reached the end, find the first, non-empty bucket for(bucket_number_second = bucket_number_first+1 ; bucket_number_second != this->priv_buckets_len() ; ++bucket_number_second){ bucket_type &b = this->priv_buckets()[bucket_number_second]; if(!b.empty()){ to_return.second = b.begin(); return to_return; } } //Otherwise, return the end node to_return.second = invalid_local_it(this->get_real_bucket_traits()); return to_return; } /// @endcond }; /// @cond template
struct make_hashtable_opt { typedef typename pack_options < uset_defaults
, O1, O2, O3, O4, O5, O6, O7>::type packed_options; //Real value traits must be calculated from options typedef typename detail::get_value_traits
::type value_traits; /// @cond static const bool external_value_traits = detail::external_value_traits_is_true
::value; typedef typename detail::eval_if_c < external_value_traits , detail::eval_value_traits
, detail::identity
>::type real_value_traits; typedef typename packed_options::bucket_traits specified_bucket_traits; /// @endcond //Real bucket traits must be calculated from options and calculated valute_traits typedef typename get_slist_impl
::type slist_impl; typedef typename detail::if_c< detail::is_same < specified_bucket_traits , default_bucket_traits >::value , detail::bucket_traits_impl
, specified_bucket_traits >::type real_bucket_traits; typedef usetopt < value_traits , typename packed_options::hash , typename packed_options::equal , typename packed_options::size_type , packed_options::constant_time_size , real_bucket_traits , packed_options::power_2_buckets > type; }; /// @endcond //! Helper metafunction to define a \c hashtable that yields to the same type when the //! same options (either explicitly or implicitly) are used. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif struct make_hashtable { /// @cond typedef hashtable_impl < typename make_hashtable_opt
::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
class hashtable : public make_hashtable
::type { typedef typename make_hashtable
::type Base; public: typedef typename Base::value_traits value_traits; typedef typename Base::real_value_traits real_value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; typedef typename Base::bucket_ptr bucket_ptr; typedef typename Base::size_type size_type; typedef typename Base::hasher hasher; typedef typename Base::bucket_traits bucket_traits; typedef typename Base::key_equal key_equal; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same
::value)); hashtable ( const bucket_traits &b_traits , const hasher & hash_func = hasher() , const key_equal &equal_func = key_equal() , const value_traits &v_traits = value_traits()) : Base(b_traits, hash_func, equal_func, v_traits) {} }; #endif } //namespace intrusive } //namespace boost #include
#endif //BOOST_INTRUSIVE_HASHTABLE_HPP
hashtable.hpp
Page URL
File URL
Prev
9/34
Next
Download
( 77 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.