DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// //======================================================================= // Copyright 2002 Marc Wintermantel (wintermantel@even-ag.ch) // ETH Zurich, Center of Structure Technologies (www.imes.ethz.ch/st) // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= // #ifndef BOOST_GRAPH_SLOAN_HPP #define BOOST_GRAPH_SLOAN_HPP #define WEIGHT1 1 //default weight for the distance in the Sloan algorithm #define WEIGHT2 2 //default weight for the degree in the Sloan algorithm #define MAXINT 2147483647 //Maximum value for a 32bit integer #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//////////////////////////////////////////////////////////// // //Sloan-Algorithm for graph reordering //(optimzes profile and wavefront, not primiraly bandwidth // //////////////////////////////////////////////////////////// namespace boost { ///////////////////////////////////////////////////////////////////////// // Function that returns the maximum depth of // a rooted level strucutre (RLS) // ///////////////////////////////////////////////////////////////////////// template
unsigned RLS_depth(Distance& d) { unsigned h_s = 0; typename Distance::iterator iter; for (iter = d.begin(); iter != d.end(); ++iter) { if(*iter > h_s) { h_s = *iter; } } return h_s; } ///////////////////////////////////////////////////////////////////////// // Function that returns the width of the largest level of // a rooted level strucutre (RLS) // ///////////////////////////////////////////////////////////////////////// template
unsigned RLS_max_width(Distance& d, my_int depth) { //Searching for the maximum width of a level std::vector
dummy_width(depth+1, 0); std::vector
::iterator my_it; typename Distance::iterator iter; unsigned w_max = 0; for (iter = d.begin(); iter != d.end(); ++iter) { dummy_width[*iter]++; } for(my_it = dummy_width.begin(); my_it != dummy_width.end(); ++my_it) { if(*my_it > w_max) w_max = *my_it; } return w_max; } ///////////////////////////////////////////////////////////////////////// // Function for finding a good starting node for Sloan algorithm // // This is to find a good starting node. "good" is in the sense // of the ordering generated. ///////////////////////////////////////////////////////////////////////// template
typename graph_traits
::vertex_descriptor sloan_start_end_vertices(Graph& G, typename graph_traits
::vertex_descriptor &s, ColorMap color, DegreeMap degree) { typedef typename property_traits
::value_type Degree; typedef typename graph_traits
::vertex_descriptor Vertex; typedef typename std::vector< typename graph_traits
::vertices_size_type>::iterator vec_iter; typedef typename graph_traits
::vertices_size_type size_type; typedef typename property_map
::const_type VertexID; s = *(vertices(G).first); Vertex e = s; Vertex i; unsigned my_degree = get(degree, s ); unsigned dummy, h_i, h_s, w_i, w_e; bool new_start = true; unsigned maximum_degree = 0; //Creating a std-vector for storing the distance from the start vertex in dist std::vector
::vertices_size_type> dist(num_vertices(G), 0); //Wrap a property_map_iterator around the std::iterator boost::iterator_property_map
dist_pmap(dist.begin(), get(vertex_index, G)); //Creating a property_map for the indices of a vertex typename property_map
::type index_map = get(vertex_index, G); //Creating a priority queue typedef indirect_cmp
> Compare; Compare comp(degree); std::priority_queue
, Compare> degree_queue(comp); //step 1 //Scan for the vertex with the smallest degree and the maximum degree typename graph_traits
::vertex_iterator ui, ui_end; for (tie(ui, ui_end) = vertices(G); ui != ui_end; ++ui) { dummy = get(degree, *ui); if(dummy < my_degree) { my_degree = dummy; s = *ui; } if(dummy > maximum_degree) { maximum_degree = dummy; } } //end 1 do{ new_start = false; //Setting the loop repetition status to false //step 2 //initialize the the disance std-vector with 0 for(typename std::vector
::vertices_size_type>::iterator iter = dist.begin(); iter != dist.end(); ++iter) *iter = 0; //generating the RLS (rooted level structure) breadth_first_search (G, s, visitor ( make_bfs_visitor(record_distances(dist_pmap, on_tree_edge() ) ) ) ); //end 2 //step 3 //calculating the depth of the RLS h_s = RLS_depth(dist); //step 4 //pushing one node of each degree in an ascending manner into degree_queue std::vector
shrink_trace(maximum_degree, false); for (tie(ui, ui_end) = vertices(G); ui != ui_end; ++ui) { dummy = get(degree, *ui); if( (dist[index_map[*ui]] == h_s ) && ( !shrink_trace[ dummy ] ) ) { degree_queue.push(*ui); shrink_trace[ dummy ] = true; } } //end 3 & 4 //step 5 //Initializing w w_e = MAXINT; //end 5 //step 6 //Testing for termination while( !degree_queue.empty() ) { i = degree_queue.top(); //getting the node with the lowest degree from the degree queue degree_queue.pop(); //ereasing the node with the lowest degree from the degree queue //generating a RLS for(typename std::vector
::vertices_size_type>::iterator iter = dist.begin(); iter != dist.end(); ++iter) *iter = 0; breadth_first_search (G, i, boost::visitor ( make_bfs_visitor(record_distances(dist_pmap, on_tree_edge() ) ) ) ); //Calculating depth and width of the rooted level h_i = RLS_depth(dist); w_i = RLS_max_width(dist, h_i); //Testing for termination if( (h_i > h_s) && (w_i < w_e) ) { h_s = h_i; s = i; while(!degree_queue.empty()) degree_queue.pop(); new_start = true; } else if(w_i < w_e) { w_e = w_i; e = i; } } //end 6 }while(new_start); return e; } ////////////////////////////////////////////////////////////////////////// // Sloan algorithm with a given starting Vertex. // // This algorithm requires user to provide a starting vertex to // compute Sloan ordering. ////////////////////////////////////////////////////////////////////////// template
OutputIterator sloan_ordering(Graph& g, typename graph_traits
::vertex_descriptor s, typename graph_traits
::vertex_descriptor e, OutputIterator permutation, ColorMap color, DegreeMap degree, PriorityMap priority, Weight W1, Weight W2) { //typedef typename property_traits
::value_type Degree; typedef typename property_traits
::value_type Degree; typedef typename property_traits
::value_type ColorValue; typedef color_traits
Color; typedef typename graph_traits
::vertex_descriptor Vertex; typedef typename std::vector
::vertices_size_type>::iterator vec_iter; typedef typename graph_traits
::vertices_size_type size_type; typedef typename property_map
::const_type VertexID; //Creating a std-vector for storing the distance from the end vertex in it typename std::vector
::vertices_size_type> dist(num_vertices(g), 0); //Wrap a property_map_iterator around the std::iterator boost::iterator_property_map
dist_pmap(dist.begin(), get(vertex_index, g)); breadth_first_search (g, e, visitor ( make_bfs_visitor(record_distances(dist_pmap, on_tree_edge() ) ) ) ); //Creating a property_map for the indices of a vertex typename property_map
::type index_map = get(vertex_index, g); //Sets the color and priority to their initial status unsigned cdeg; typename graph_traits
::vertex_iterator ui, ui_end; for (tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui) { put(color, *ui, Color::white()); cdeg=get(degree, *ui)+1; put(priority, *ui, W1*dist[index_map[*ui]]-W2*cdeg ); } //Priority list typedef indirect_cmp
> Compare; Compare comp(priority); std::list
priority_list; //Some more declarations typename graph_traits
::out_edge_iterator ei, ei_end, ei2, ei2_end; Vertex u, v, w; put(color, s, Color::green()); //Sets the color of the starting vertex to gray priority_list.push_front(s); //Puts s into the priority_list while ( !priority_list.empty() ) { priority_list.sort(comp); //Orders the elements in the priority list in an ascending manner u = priority_list.front(); //Accesses the last element in the priority list priority_list.pop_front(); //Removes the last element in the priority list if(get(color, u) == Color::green() ) { //for-loop over all out-edges of vertex u for (tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei) { v = target(*ei, g); put( priority, v, get(priority, v) + W2 ); //updates the priority if (get(color, v) == Color::white() ) //test if the vertex is inactive { put(color, v, Color::green() ); //giving the vertex a preactive status priority_list.push_front(v); //writing the vertex in the priority_queue } } } //Here starts step 8 *permutation++ = u; //Puts u to the first position in the permutation-vector put(color, u, Color::black() ); //Gives u an inactive status //for loop over all the adjacent vertices of u for (tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei) { v = target(*ei, g); if (get(color, v) == Color::green() ) { //tests if the vertex is inactive put(color, v, Color::red() ); //giving the vertex an active status put(priority, v, get(priority, v)+W2); //updates the priority //for loop over alll adjacent vertices of v for (tie(ei2, ei2_end) = out_edges(v, g); ei2 != ei2_end; ++ei2) { w = target(*ei2, g); if(get(color, w) != Color::black() ) { //tests if vertex is postactive put(priority, w, get(priority, w)+W2); //updates the priority if(get(color, w) == Color::white() ){ put(color, w, Color::green() ); // gives the vertex a preactive status priority_list.push_front(w); // puts the vertex into the priority queue } //end if } //end if } //end for } //end if } //end for } //end while return permutation; } ///////////////////////////////////////////////////////////////////////////////////////// // Same algorithm as before, but without the weights given (taking default weights template
OutputIterator sloan_ordering(Graph& g, typename graph_traits
::vertex_descriptor s, typename graph_traits
::vertex_descriptor e, OutputIterator permutation, ColorMap color, DegreeMap degree, PriorityMap priority) { return sloan_ordering(g, s, e, permutation, color, degree, priority, WEIGHT1, WEIGHT2); } ////////////////////////////////////////////////////////////////////////// // Sloan algorithm without a given starting Vertex. // // This algorithm finds a good starting vertex itself to // compute Sloan-ordering. ////////////////////////////////////////////////////////////////////////// template < class Graph, class OutputIterator, class Color, class Degree, class Priority, class Weight> inline OutputIterator sloan_ordering(Graph& G, OutputIterator permutation, Color color, Degree degree, Priority priority, Weight W1, Weight W2 ) { typedef typename boost::graph_traits
::vertex_descriptor Vertex; Vertex s, e; e = sloan_start_end_vertices(G, s, color, degree); return sloan_ordering(G, s, e, permutation, color, degree, priority, W1, W2); } ///////////////////////////////////////////////////////////////////////////////////////// // Same as before, but without given weights (default weights are taken instead) template < class Graph, class OutputIterator, class Color, class Degree, class Priority > inline OutputIterator sloan_ordering(Graph& G, OutputIterator permutation, Color color, Degree degree, Priority priority) { return sloan_ordering(G, permutation, color, degree, priority, WEIGHT1, WEIGHT2); } } // namespace boost #endif // BOOST_GRAPH_SLOAN_HPP
sloan_ordering.hpp
Page URL
File URL
Prev
80/95
Next
Download
( 15 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.