& params) { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif std::pair diam(sqrt(double(num_vertices(graph))), 1.0); std::pair learn(0.8, 0.2); gursoy_atun_layout(graph, space, position, choose_param(get_param(params, iterations_t()), num_vertices(graph)), choose_param(get_param(params, diameter_range_t()), diam).first, choose_param(get_param(params, diameter_range_t()), diam).second, choose_param(get_param(params, learning_constant_range_t()), learn).first, choose_param(get_param(params, learning_constant_range_t()), learn).second, choose_const_pmap(get_param(params, vertex_index), graph, vertex_index), choose_param(get_param(params, edge_weight), dummy_property_map())); } /*********************************************************** * Topologies * ***********************************************************/ template class convex_topology { struct point { point() { } double& operator[](std::size_t i) {return values[i];} const double& operator[](std::size_t i) const {return values[i];} private: double values[Dims]; }; public: typedef point point_type; double distance(point a, point b) const { double dist = 0; for (std::size_t i = 0; i < Dims; ++i) { double diff = b[i] - a[i]; dist += diff * diff; } // Exact properties of the distance are not important, as long as // < on what this returns matches real distances return dist; } point move_position_toward(point a, double fraction, point b) const { point result; for (std::size_t i = 0; i < Dims; ++i) result[i] = a[i] + (b[i] - a[i]) * fraction; return result; } }; template class hypercube_topology : public convex_topology { typedef uniform_01 rand_t; public: typedef typename convex_topology::point_type point_type; explicit hypercube_topology(double scaling = 1.0) : gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)), scaling(scaling) { } hypercube_topology(RandomNumberGenerator& gen, double scaling = 1.0) : gen_ptr(), rand(new rand_t(gen)), scaling(scaling) { } point_type random_point() const { point_type p; for (std::size_t i = 0; i < Dims; ++i) p[i] = (*rand)() * scaling; return p; } private: shared_ptr gen_ptr; shared_ptr rand; double scaling; }; template class square_topology : public hypercube_topology<2, RandomNumberGenerator> { typedef hypercube_topology<2, RandomNumberGenerator> inherited; public: explicit square_topology(double scaling = 1.0) : inherited(scaling) { } square_topology(RandomNumberGenerator& gen, double scaling = 1.0) : inherited(gen, scaling) { } }; template class cube_topology : public hypercube_topology<3, RandomNumberGenerator> { typedef hypercube_topology<3, RandomNumberGenerator> inherited; public: explicit cube_topology(double scaling = 1.0) : inherited(scaling) { } cube_topology(RandomNumberGenerator& gen, double scaling = 1.0) : inherited(gen, scaling) { } }; template class ball_topology : public convex_topology { typedef uniform_01 rand_t; public: typedef typename convex_topology::point_type point_type; explicit ball_topology(double radius = 1.0) : gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)), radius(radius) { } ball_topology(RandomNumberGenerator& gen, double radius = 1.0) : gen_ptr(), rand(new rand_t(gen)), radius(radius) { } point_type random_point() const { point_type p; double dist_sum; do { dist_sum = 0.0; for (std::size_t i = 0; i < Dims; ++i) { double x = (*rand)() * 2*radius - radius; p[i] = x; dist_sum += x * x; } } while (dist_sum > radius*radius); return p; } private: shared_ptr gen_ptr; shared_ptr rand; double radius; }; template class circle_topology : public ball_topology<2, RandomNumberGenerator> { typedef ball_topology<2, RandomNumberGenerator> inherited; public: explicit circle_topology(double radius = 1.0) : inherited(radius) { } circle_topology(RandomNumberGenerator& gen, double radius = 1.0) : inherited(gen, radius) { } }; template class sphere_topology : public ball_topology<3, RandomNumberGenerator> { typedef ball_topology<3, RandomNumberGenerator> inherited; public: explicit sphere_topology(double radius = 1.0) : inherited(radius) { } sphere_topology(RandomNumberGenerator& gen, double radius = 1.0) : inherited(gen, radius) { } }; template class heart_topology { // Heart is defined as the union of three shapes: // Square w/ corners (+-1000, -1000), (0, 0), (0, -2000) // Circle centered at (-500, -500) radius 500*sqrt(2) // Circle centered at (500, -500) radius 500*sqrt(2) // Bounding box (-1000, -2000) - (1000, 500*(sqrt(2) - 1)) struct point { point() { values[0] = 0.0; values[1] = 0.0; } point(double x, double y) { values[0] = x; values[1] = y; } double& operator[](std::size_t i) { return values[i]; } double operator[](std::size_t i) const { return values[i]; } private: double values[2]; }; bool in_heart(point p) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::abs; using std::pow; #endif if (p[1] < abs(p[0]) - 2000) return false; // Bottom if (p[1] <= -1000) return true; // Diagonal of square if (pow(p[0] - -500, 2) + pow(p[1] - -500, 2) <= 500000) return true; // Left circle if (pow(p[0] - 500, 2) + pow(p[1] - -500, 2) <= 500000) return true; // Right circle return false; } bool segment_within_heart(point p1, point p2) const { // Assumes that p1 and p2 are within the heart if ((p1[0] < 0) == (p2[0] < 0)) return true; // Same side of symmetry line if (p1[0] == p2[0]) return true; // Vertical double slope = (p2[1] - p1[1]) / (p2[0] - p1[0]); double intercept = p1[1] - p1[0] * slope; if (intercept > 0) return false; // Crosses between circles return true; } typedef uniform_01 rand_t; public: typedef point point_type; heart_topology() : gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)) { } heart_topology(RandomNumberGenerator& gen) : gen_ptr(), rand(new rand_t(gen)) { } point random_point() const { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif point result; double sqrt2 = sqrt(2.); do { result[0] = (*rand)() * (1000 + 1000 * sqrt2) - (500 + 500 * sqrt2); result[1] = (*rand)() * (2000 + 500 * (sqrt2 - 1)) - 2000; } while (!in_heart(result)); return result; } double distance(point a, point b) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif if (segment_within_heart(a, b)) { // Straight line return sqrt((b[0] - a[0]) * (b[0] - a[0]) + (b[1] - a[1]) * (b[1] - a[1])); } else { // Straight line bending around (0, 0) return sqrt(a[0] * a[0] + a[1] * a[1]) + sqrt(b[0] * b[0] + b[1] * b[1]); } } point move_position_toward(point a, double fraction, point b) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif if (segment_within_heart(a, b)) { // Straight line return point(a[0] + (b[0] - a[0]) * fraction, a[1] + (b[1] - a[1]) * fraction); } else { double distance_to_point_a = sqrt(a[0] * a[0] + a[1] * a[1]); double distance_to_point_b = sqrt(b[0] * b[0] + b[1] * b[1]); double location_of_point = distance_to_point_a / (distance_to_point_a + distance_to_point_b); if (fraction < location_of_point) return point(a[0] * (1 - fraction / location_of_point), a[1] * (1 - fraction / location_of_point)); else return point( b[0] * ((fraction - location_of_point) / (1 - location_of_point)), b[1] * ((fraction - location_of_point) / (1 - location_of_point))); } } private: shared_ptr gen_ptr; shared_ptr rand; }; } // namespace boost #endif // BOOST_GRAPH_GURSOY_ATUN_LAYOUT_HPP