DriveHQ Start Menu
Cloud Drive Mapping
Folder Sync
Cloud Backup
True Drop Box
FTP/SFTP Hosting
Group Account
DriveHQ Start Menu
Online File Server
My Storage
|
Manage Shares
|
Publishes
|
Drop Boxes
|
Group Account
WebDAV Drive Mapping
Cloud Drive Home
|
WebDAV Guide
|
Drive Mapping Tool
|
Drive Mapping URL
Complete Data Backup
Backup Guide
|
Online Backup Tool
|
Cloud-to-Cloud Backup
FTP, Email & Web Service
FTP Home
|
FTP Hosting FAQ
|
Email Hosting
|
EmailManager
|
Web Hosting
Help & Resources
About
|
Enterprise Service
|
Partnership
|
Comparisons
|
Support
Quick Links
Security and Privacy
Download Software
Service Manual
Use Cases
Group Account
Online Help
Blog
Contact
Cloud Surveillance
Sign Up
Login
Features
Business Features
Online File Server
FTP Hosting
Cloud Drive Mapping
Cloud File Backup
Email Backup & Hosting
Cloud File Sharing
Folder Synchronization
Group Management
True Drop Box
Full-text Search
AD Integration/SSO
Mobile Access
IP Camera & DVR Solution
More...
Personal Features
Personal Cloud Drive
Backup All Devices
Mobile APPs
Personal Web Hosting
Sub-Account (for Kids)
Home/PC/Kids Monitoring
More...
Software
DriveHQ Drive Mapping Tool
DriveHQ FileManager
DriveHQ Online Backup
DriveHQ Mobile Apps
Pricing
Business Plans & Pricing
Personal Plans & Pricing
Price Comparison with Others
Feature Comparison with Others
Install Mobile App
Sign up
Creating account...
Invalid character in username! Only 0-9, a-z, A-Z, _, -, . allowed.
Username is required!
Invalid email address!
E-mail is required!
Password is required!
Password is invalid!
Password and confirmation do not match.
Confirm password is required!
I accept
Membership Agreement
Please read the Membership Agreement and check "I accept"!
Free Quick Sign-up
Sign-up Page
Log in
Signing in...
Username or e-mail address is required!
Password is required!
Keep me logged in
Quick Login
Forgot Password
Up
Upload
Download
Share
Publish
New Folder
New File
Copy
Cut
Delete
Paste
Rate
Upgrade
Rotate
Effect
Edit
Slide
History
// // basic_datagram_socket.hpp // ~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_BASIC_DATAGRAM_SOCKET_HPP #define BOOST_ASIO_BASIC_DATAGRAM_SOCKET_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace asio { /// Provides datagram-oriented socket functionality. /** * The basic_datagram_socket class template provides asynchronous and blocking * datagram-oriented socket functionality. * * @par Thread Safety * @e Distinct @e objects: Safe.@n * @e Shared @e objects: Unsafe. */ template
> class basic_datagram_socket : public basic_socket
{ public: /// The native representation of a socket. typedef typename DatagramSocketService::native_type native_type; /// The protocol type. typedef Protocol protocol_type; /// The endpoint type. typedef typename Protocol::endpoint endpoint_type; /// Construct a basic_datagram_socket without opening it. /** * This constructor creates a datagram socket without opening it. The open() * function must be called before data can be sent or received on the socket. * * @param io_service The io_service object that the datagram socket will use * to dispatch handlers for any asynchronous operations performed on the * socket. */ explicit basic_datagram_socket(boost::asio::io_service& io_service) : basic_socket
(io_service) { } /// Construct and open a basic_datagram_socket. /** * This constructor creates and opens a datagram socket. * * @param io_service The io_service object that the datagram socket will use * to dispatch handlers for any asynchronous operations performed on the * socket. * * @param protocol An object specifying protocol parameters to be used. * * @throws boost::system::system_error Thrown on failure. */ basic_datagram_socket(boost::asio::io_service& io_service, const protocol_type& protocol) : basic_socket
(io_service, protocol) { } /// Construct a basic_datagram_socket, opening it and binding it to the given /// local endpoint. /** * This constructor creates a datagram socket and automatically opens it bound * to the specified endpoint on the local machine. The protocol used is the * protocol associated with the given endpoint. * * @param io_service The io_service object that the datagram socket will use * to dispatch handlers for any asynchronous operations performed on the * socket. * * @param endpoint An endpoint on the local machine to which the datagram * socket will be bound. * * @throws boost::system::system_error Thrown on failure. */ basic_datagram_socket(boost::asio::io_service& io_service, const endpoint_type& endpoint) : basic_socket
(io_service, endpoint) { } /// Construct a basic_datagram_socket on an existing native socket. /** * This constructor creates a datagram socket object to hold an existing * native socket. * * @param io_service The io_service object that the datagram socket will use * to dispatch handlers for any asynchronous operations performed on the * socket. * * @param protocol An object specifying protocol parameters to be used. * * @param native_socket The new underlying socket implementation. * * @throws boost::system::system_error Thrown on failure. */ basic_datagram_socket(boost::asio::io_service& io_service, const protocol_type& protocol, const native_type& native_socket) : basic_socket
( io_service, protocol, native_socket) { } /// Send some data on a connected socket. /** * This function is used to send data on the datagram socket. The function * call will block until the data has been sent successfully or an error * occurs. * * @param buffers One ore more data buffers to be sent on the socket. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. * * @note The send operation can only be used with a connected socket. Use * the send_to function to send data on an unconnected datagram socket. * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code socket.send(boost::asio::buffer(data, size)); @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template
std::size_t send(const ConstBufferSequence& buffers) { boost::system::error_code ec; std::size_t s = this->service.send(this->implementation, buffers, 0, ec); boost::asio::detail::throw_error(ec); return s; } /// Send some data on a connected socket. /** * This function is used to send data on the datagram socket. The function * call will block until the data has been sent successfully or an error * occurs. * * @param buffers One ore more data buffers to be sent on the socket. * * @param flags Flags specifying how the send call is to be made. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. * * @note The send operation can only be used with a connected socket. Use * the send_to function to send data on an unconnected datagram socket. */ template
std::size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->service.send( this->implementation, buffers, flags, ec); boost::asio::detail::throw_error(ec); return s; } /// Send some data on a connected socket. /** * This function is used to send data on the datagram socket. The function * call will block until the data has been sent successfully or an error * occurs. * * @param buffers One or more data buffers to be sent on the socket. * * @param flags Flags specifying how the send call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes sent. * * @note The send operation can only be used with a connected socket. Use * the send_to function to send data on an unconnected datagram socket. */ template
std::size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { return this->service.send(this->implementation, buffers, flags, ec); } /// Start an asynchronous send on a connected socket. /** * This function is used to send data on the datagram socket. The function * call will block until the data has been sent successfully or an error * occurs. * * @param buffers One or more data buffers to be sent on the socket. Although * the buffers object may be copied as necessary, ownership of the underlying * memory blocks is retained by the caller, which must guarantee that they * remain valid until the handler is called. * * @param handler The handler to be called when the send operation completes. * Copies will be made of the handler as required. The function signature of * the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @note The async_send operation can only be used with a connected socket. * Use the async_send_to function to send data on an unconnected datagram * socket. * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code * socket.async_send(boost::asio::buffer(data, size), handler); * @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template
void async_send(const ConstBufferSequence& buffers, WriteHandler handler) { this->service.async_send(this->implementation, buffers, 0, handler); } /// Start an asynchronous send on a connected socket. /** * This function is used to send data on the datagram socket. The function * call will block until the data has been sent successfully or an error * occurs. * * @param buffers One or more data buffers to be sent on the socket. Although * the buffers object may be copied as necessary, ownership of the underlying * memory blocks is retained by the caller, which must guarantee that they * remain valid until the handler is called. * * @param flags Flags specifying how the send call is to be made. * * @param handler The handler to be called when the send operation completes. * Copies will be made of the handler as required. The function signature of * the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @note The async_send operation can only be used with a connected socket. * Use the async_send_to function to send data on an unconnected datagram * socket. */ template
void async_send(const ConstBufferSequence& buffers, socket_base::message_flags flags, WriteHandler handler) { this->service.async_send(this->implementation, buffers, flags, handler); } /// Send a datagram to the specified endpoint. /** * This function is used to send a datagram to the specified remote endpoint. * The function call will block until the data has been sent successfully or * an error occurs. * * @param buffers One or more data buffers to be sent to the remote endpoint. * * @param destination The remote endpoint to which the data will be sent. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code * boost::asio::ip::udp::endpoint destination( * boost::asio::ip::address::from_string("1.2.3.4"), 12345); * socket.send_to(boost::asio::buffer(data, size), destination); * @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template
std::size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination) { boost::system::error_code ec; std::size_t s = this->service.send_to( this->implementation, buffers, destination, 0, ec); boost::asio::detail::throw_error(ec); return s; } /// Send a datagram to the specified endpoint. /** * This function is used to send a datagram to the specified remote endpoint. * The function call will block until the data has been sent successfully or * an error occurs. * * @param buffers One or more data buffers to be sent to the remote endpoint. * * @param destination The remote endpoint to which the data will be sent. * * @param flags Flags specifying how the send call is to be made. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. */ template
std::size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->service.send_to( this->implementation, buffers, destination, flags, ec); boost::asio::detail::throw_error(ec); return s; } /// Send a datagram to the specified endpoint. /** * This function is used to send a datagram to the specified remote endpoint. * The function call will block until the data has been sent successfully or * an error occurs. * * @param buffers One or more data buffers to be sent to the remote endpoint. * * @param destination The remote endpoint to which the data will be sent. * * @param flags Flags specifying how the send call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes sent. */ template
std::size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, boost::system::error_code& ec) { return this->service.send_to(this->implementation, buffers, destination, flags, ec); } /// Start an asynchronous send. /** * This function is used to asynchronously send a datagram to the specified * remote endpoint. The function call always returns immediately. * * @param buffers One or more data buffers to be sent to the remote endpoint. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param destination The remote endpoint to which the data will be sent. * Copies will be made of the endpoint as required. * * @param handler The handler to be called when the send operation completes. * Copies will be made of the handler as required. The function signature of * the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code * boost::asio::ip::udp::endpoint destination( * boost::asio::ip::address::from_string("1.2.3.4"), 12345); * socket.async_send_to( * boost::asio::buffer(data, size), destination, handler); * @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template
void async_send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, WriteHandler handler) { this->service.async_send_to(this->implementation, buffers, destination, 0, handler); } /// Start an asynchronous send. /** * This function is used to asynchronously send a datagram to the specified * remote endpoint. The function call always returns immediately. * * @param buffers One or more data buffers to be sent to the remote endpoint. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param flags Flags specifying how the send call is to be made. * * @param destination The remote endpoint to which the data will be sent. * Copies will be made of the endpoint as required. * * @param handler The handler to be called when the send operation completes. * Copies will be made of the handler as required. The function signature of * the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). */ template
void async_send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, WriteHandler handler) { this->service.async_send_to(this->implementation, buffers, destination, flags, handler); } /// Receive some data on a connected socket. /** * This function is used to receive data on the datagram socket. The function * call will block until data has been received successfully or an error * occurs. * * @param buffers One or more buffers into which the data will be received. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. * * @note The receive operation can only be used with a connected socket. Use * the receive_from function to receive data on an unconnected datagram * socket. * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code socket.receive(boost::asio::buffer(data, size)); @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template
std::size_t receive(const MutableBufferSequence& buffers) { boost::system::error_code ec; std::size_t s = this->service.receive( this->implementation, buffers, 0, ec); boost::asio::detail::throw_error(ec); return s; } /// Receive some data on a connected socket. /** * This function is used to receive data on the datagram socket. The function * call will block until data has been received successfully or an error * occurs. * * @param buffers One or more buffers into which the data will be received. * * @param flags Flags specifying how the receive call is to be made. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. * * @note The receive operation can only be used with a connected socket. Use * the receive_from function to receive data on an unconnected datagram * socket. */ template
std::size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->service.receive( this->implementation, buffers, flags, ec); boost::asio::detail::throw_error(ec); return s; } /// Receive some data on a connected socket. /** * This function is used to receive data on the datagram socket. The function * call will block until data has been received successfully or an error * occurs. * * @param buffers One or more buffers into which the data will be received. * * @param flags Flags specifying how the receive call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes received. * * @note The receive operation can only be used with a connected socket. Use * the receive_from function to receive data on an unconnected datagram * socket. */ template
std::size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { return this->service.receive(this->implementation, buffers, flags, ec); } /// Start an asynchronous receive on a connected socket. /** * This function is used to asynchronously receive data from the datagram * socket. The function call always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param handler The handler to be called when the receive operation * completes. Copies will be made of the handler as required. The function * signature of the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @note The async_receive operation can only be used with a connected socket. * Use the async_receive_from function to receive data on an unconnected * datagram socket. * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code * socket.async_receive(boost::asio::buffer(data, size), handler); * @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template
void async_receive(const MutableBufferSequence& buffers, ReadHandler handler) { this->service.async_receive(this->implementation, buffers, 0, handler); } /// Start an asynchronous receive on a connected socket. /** * This function is used to asynchronously receive data from the datagram * socket. The function call always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param flags Flags specifying how the receive call is to be made. * * @param handler The handler to be called when the receive operation * completes. Copies will be made of the handler as required. The function * signature of the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @note The async_receive operation can only be used with a connected socket. * Use the async_receive_from function to receive data on an unconnected * datagram socket. */ template
void async_receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, ReadHandler handler) { this->service.async_receive(this->implementation, buffers, flags, handler); } /// Receive a datagram with the endpoint of the sender. /** * This function is used to receive a datagram. The function call will block * until data has been received successfully or an error occurs. * * @param buffers One or more buffers into which the data will be received. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the datagram. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code * boost::asio::ip::udp::endpoint sender_endpoint; * socket.receive_from( * boost::asio::buffer(data, size), sender_endpoint); * @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template
std::size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint) { boost::system::error_code ec; std::size_t s = this->service.receive_from( this->implementation, buffers, sender_endpoint, 0, ec); boost::asio::detail::throw_error(ec); return s; } /// Receive a datagram with the endpoint of the sender. /** * This function is used to receive a datagram. The function call will block * until data has been received successfully or an error occurs. * * @param buffers One or more buffers into which the data will be received. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the datagram. * * @param flags Flags specifying how the receive call is to be made. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. */ template
std::size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->service.receive_from( this->implementation, buffers, sender_endpoint, flags, ec); boost::asio::detail::throw_error(ec); return s; } /// Receive a datagram with the endpoint of the sender. /** * This function is used to receive a datagram. The function call will block * until data has been received successfully or an error occurs. * * @param buffers One or more buffers into which the data will be received. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the datagram. * * @param flags Flags specifying how the receive call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes received. */ template
std::size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, boost::system::error_code& ec) { return this->service.receive_from(this->implementation, buffers, sender_endpoint, flags, ec); } /// Start an asynchronous receive. /** * This function is used to asynchronously receive a datagram. The function * call always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the datagram. Ownership of the sender_endpoint object * is retained by the caller, which must guarantee that it is valid until the * handler is called. * * @param handler The handler to be called when the receive operation * completes. Copies will be made of the handler as required. The function * signature of the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code socket.async_receive_from( * boost::asio::buffer(data, size), 0, sender_endpoint, handler); @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template
void async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, ReadHandler handler) { this->service.async_receive_from(this->implementation, buffers, sender_endpoint, 0, handler); } /// Start an asynchronous receive. /** * This function is used to asynchronously receive a datagram. The function * call always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the datagram. Ownership of the sender_endpoint object * is retained by the caller, which must guarantee that it is valid until the * handler is called. * * @param flags Flags specifying how the receive call is to be made. * * @param handler The handler to be called when the receive operation * completes. Copies will be made of the handler as required. The function * signature of the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). */ template
void async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, ReadHandler handler) { this->service.async_receive_from(this->implementation, buffers, sender_endpoint, flags, handler); } }; } // namespace asio } // namespace boost #include
#endif // BOOST_ASIO_BASIC_DATAGRAM_SOCKET_HPP
basic_datagram_socket.hpp
Page URL
File URL
Prev 1/38
Next
Download
( 32 KB )
Note: The DriveHQ service banners will NOT be displayed if the file owner is a paid member.
Comments
Total ratings:
0
Average rating:
Not Rated
Would you like to comment?
Join DriveHQ
for a free account, or
Logon
if you are already a member.